Part Number Hot Search : 
KBPC251 28M00 W25S243A U834BS 2M914VT 20007 AD579JN LL07UV
Product Description
Full Text Search
 

To Download AGL015V2-CS484ES Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  december 2012 i ? 2012 microsemi corporation igloo low power flash fpgas with flash*freeze technology features and benefits low power ? 1.2 v to 1.5 v core voltage support for low power ? supports single-voltage system operation ? 5 w power consumption in flash*freeze mode ? low power active fpga operation ? flash*freeze technology enables ultra-low power consumption while maintaining fpga content ? easy entry to / exit from ultra-low power flash*freeze mode high capacity ? 15k to 1 million system gates ? up to 144 kbits of true dual-port sram ? up to 300 user i/os reprogrammable flash technology ? 130-nm, 7-layer metal, flash-based cmos process ? instant on level 0 support ? single-chip solution ? retains programmed design when powered off ? 250 mhz (1.5 v systems) and 160 mhz (1.2 v systems) system performance in-system programming (isp) and security ? isp using on-chip 128-bit advanced encryption standard (aes) decryption (except arm ? -enabled igloo ? devices) via jtag (ieee 1532?compliant) ? ? flashlock ? designed to secure fpga contents high-performance routing hierarchy ? segmented, hierarchical routing and clock structure advanced i/o ? 700 mbps ddr, lvds-capable i/os (agl250 and above) ? 1.2 v, 1.5 v, 1.8 v, 2.5 v, and 3.3 v mixed-voltage operation ? bank-selectable i/o voltages?up to 4 banks per chip ? single-ended i/o standards: lvttl, lvcmos 3.3 v / 2.5 v / 1.8 v / 1.5 v / 1.2 v, 3.3 v pci / 3.3 v pci-x ? , and lvcmos 2.5 v / 5.0 v input ? ? differential i/o st andards: lvpecl, lvds, b-lvds, and m- lvds (agl250 and above) ? wide range power supply voltage support per jesd8-b, allowing i/os to operate from 2.7 v to 3.6 v ? wide range power supply voltage support per jesd8-12, allowing i/os to operate from 1.14 v to 1.575 v ? i/o registers on input, output, and enable paths ? hot-swappable and cold-sparing i/os ? ? programmable output slew rate ? and drive strength ? weak pull-up/-down ? ieee 1149.1 (jtag) boundary scan test ? pin-compatible packages across the igloo family clock conditioning circuit (ccc) and pll ? ? six ccc blocks, one with an integrated pll ? configurable phase shift, multiply/divide, delay capabilities, and external feedback ? wide input frequency range (1.5 mhz up to 250 mhz) embedded memory ? 1 kbit of flashrom user nonvolatile memory ? srams and fifos with variable-aspect-ratio 4,608-bit ? ram blocks (1, 2, 4, 9, and 18 organizations) ? true dual-port sram (except 18) ? arm processor support in igloo fpgas ? m1 igloo devices?cortex?-m1 soft processor available with or without debug ? agl015 and agl030 devices do not support this feat ure. ? supported only by agl015 and agl030 devices. igloo devices agl015 1 agl030 agl060 agl125 agl250 agl400 agl600 agl1000 arm-enabled igloo devices 2 m1agl250 m1agl600 m1agl1000 system gates 15,000 30,000 60,000 125,000 250,000 400,000 600,000 1,000,000 typical equivalent macrocells 128 256 512 1,024 2,048 ? ? ? versatiles (d-flip-flops) 384 768 1,536 3,072 6,144 9,216 13,824 24,576 flash*freeze mode (typic al, w) 5 5 10 16 24 32 36 53 ram kbits (1,024 bits) ? ? 18 36 36 54 108 144 4,608-bit blocks ? ? 4 8 8 12 24 32 flashrom kbits (1,024 bits) 1 1 1 1 1 1 1 1 aes-protected isp 2 ? ? yes yes yes yes yes yes integrated pll in cccs 3 ??11 1 1 1 1 versanet globals 4 6 6 18 18 18 18 18 18 i/o banks 2 2 2 2 4 4 4 4 maximum user i/os 49 81 96 133 143 194 235 300 package pins uc/cs qfn vqfp fbga qn68 uc81 cs81 qn48, qn68, qn132 vq100 cs121 3 qn132 vq100 fg144 6 cs196 qn132 vq100 fg144 cs81, cs196 5 qn132 5,6 vq100 fg144 cs196 fg144, fg256, fg484 cs281 fg144, fg256, fg484 cs281 fg144, fg256, fg484 notes: 1. agl015 is not recommended for new designs 2. aes is not available for arm-enabled igloo devices. 3. agl060 in cs121 does not support the pll. 4. six chip (main) and twelve quadrant gl obal networks are avail able for agl060 and above. 5. the m1agl250 device does not support this package. 6. device/package support tbd. 7. the iglooe datasheet and iglooe fpga fabric user?s guide provide information on highe r densities and additional features. revision 23
igloo low power flash fpgas ii revision 23 i/os per package 1 igloo devices agl015 2 agl030 agl060 agl125 agl250 agl400 agl600 agl1000 arm-enabled igloo devices m1agl250 m1agl600 m1agl1000 package i/o type 3 single-ended i/o single-ended i/o single-ended i/o single-ended i/o single-ended i/o 4 differential i/o pairs single-ended i/o 4 differential i/o pairs single-ended i/o 4 differential i/o pairs single-ended i/o 4 differential i/o pairs qn48 ?34? ????????? qn68 49 49 ? ? ? ? ? ? ? ? ? ? uc81 ?66? ????????? cs81 ?66? ?607?????? cs121 ??9696???????? vq100 ?7771716813?????? qn132 ?81808487 5,6 19 5,6 ?????? cs196 ???133143 5 35 5 143 35 ? ? ? ? fg144 ??96 7 97 97 24 97 25 97 25 97 25 fg256 7 ? ? ? ? ? ? 178 38 177 43 177 44 cs281 ? ? ? ? ? ? ? ? 215 53 215 53 fg484 7 ? ? ? ? ? ? 194 38 235 60 300 74 notes: 1. when considering migrating your design to a lower- or higher-density device, refer to the igloo fpga fabric user?s guide to ensure compliance with design and bo ard migration requirements. 2. agl015 is not recommended for new designs. 3. when the flash*freeze pin is used to directly enable flash*freez e mode and not used as a regular i/o, the number of single- ended user i/os available is reduced by one. 4. each used differential i/o pair reduces t he number of single-ended i/os available by two. 5. the m1agl250 device does not support qn132 or cs196 packages. 6. device/package support tbd. 7. fg256 and fg484 are footprint-compatible packages. table 1 ? igloo fpgas package sizes dimensions package uc81 cs81 cs121 qn48 qn68 qn132 cs196 cs281 fg144 vq100 fg256 fg484 length width (mm\mm) 4 4 5 5 6 6 6 6 8 8 8 8 8 8 10 10 13 13 14 14 17 17 23 23 nominal area (mm 2 ) 16 25 36 36 64 64 64 100 169 196 289 529 pitch (mm) 0.4 0.5 0.5 0.4 0.4 0.5 0.5 0.5 1.0 0.5 1.0 1.0 height (mm) 0.80 0.80 0.99 0.90 0.90 0.75 1.20 1.05 1.45 1.00 1.60 2.23
igloo low power flash fpgas revision 23 iii igloo ordering information note: marking information: igloo v2 devices do not have v2 marking, but igloo v5 devic es are marked accordingly. supply voltage 2 = 1.2 v to 1.5 v 5 = 1.5 v only agl1000 v2 fg _ part number igloo devices package type vq = very thin quad flat pack (0.5 mm pitch) qn = quad flat pack no leads (0.4 mm and 0.5 mm pitch) 144 i y package lead count y = device includes license to implement ip based on the cryptography research, inc. (cri) patent portfolio g lead-free packaging application (temperature range) security feature blank = commercial (0c to +70c ambient temperature) i = industrial ( ? 40c to +85c ambient temperature) blank = standard packaging g= rohs-compliant packaging (some packages also halogen-free) pp = pre-production es = engineering sample (room temperature only) 30,000 system gates agl030 = 15,000 system gates agl015 = 60,000 system gates agl060 = 125,000 system gates agl125 = 250,000 system gates agl250 = 600,000 system gates agl600 = 400,000 system gates agl400 = 1,000,000 system gates agl1000 = cs = chip scale package (0.4 mm and 0.5 mm pitches) uc = micro chip scale package (0.4 mm pitch) fg = fine pitch ball grid array (1.0 mm pitch) igloo devices with cortex-m1 250,000 system gates m1agl250 = 600,000 system gates m1agl600 = 1,000,000 system gates m1agl1000 = blank = device does not include license to implement ip based on the cryptography research, inc. (cri) patent portfolio
igloo low power flash fpgas iv revision 23 temperature grade offerings igloo device status references made to igloo devices also apply to arm-enabled iglooe devices. the arm-enabled part numbers start with m1 (cortex-m1). contact your local microsemi soc products gr oup representative for device availability: www.microsemi.com/soc /contact/default.aspx . agl015 and agl030 the agl015 and agl030 are architecturally comp atible; there are no ram or pll features. devices not recommended for new designs agl015 is not recommended for new designs. package agl015 1 agl030 agl060 agl125 agl2 50 agl400 agl600 agl1000 m1agl250 m1agl600 m1agl1000 qn48 ?c, i? ? ? ? ? ? qn68 c, i ? ? ? ? ? ? ? uc81 ?c, i? ? ? ? ? ? cs81 ? c, i ? ? c, i ? ? ? cs121 ? ? c, i c, i ? ? ? ? vq100 ? c, i c, i c, i c, i ? ? ? qn132 ? c, i c, i 2 c, i c, i 2 ?? ? cs196 ? ? ? c, i c, i c, i ? ? fg144 ??c, i 2 c, i c, i c, i c, i c, i fg256 ???? ?c, ic, ic, i cs281 ???? ??c, ic, i fg484 ???? ?c, ic, ic, i notes: 1. agl015 is not recommended for new designs. 2. device/package support tbd. c = commercial temperature range: 0c to 70c ambient temperature. i = industrial temperature range: ?40c to 85c ambient temperature. igloo devices status m1 igloo devices status agl015 not recommended for new designs. agl030 production agl060 production agl125 production agl250 production m1agl250 production agl400 production agl600 production m1agl600 production agl1000 production m1agl1000 production
igloo low power flash fpgas revision 23 v table of contents igloo device family overview general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 igloo dc and switchi ng characteristics general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 calculating power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 power calculation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 user i/o characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 versatile characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-98 global resource characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-104 clock conditioning circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-113 embedded sram and fifo characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-116 embedded flashrom characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-130 jtag 1532 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-131 pin descriptions supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 user pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 jtag pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 special function pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 related documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 package pin assignments uc81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 cs81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 cs121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 cs196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9 cs281 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16 qn48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23 qn68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25 qn132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28 vq100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37 fg144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42 fg256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-55 fg484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-65 datasheet information list of changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 datasheet categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 safety critical, life support, and high-reliability applications policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12

revision 23 1-1 1 ? igloo device family overview general description the igloo family of flash fpgas, based on a 130-nm flash process, offers the lowest power fpga, a single-chip solution, small footprint packages, reprogrammability, and an abundance of advanced features. the flash*freeze technology used in igloo devices enables entering and exiting an ultra-low power mode that consumes as little as 5 w while retain ing sram and register data. flash*freeze technology simplifies power management through i/o and clock management with rapid recovery to operation mode. the low power active capability (static idle) allows for ultra-low power consumption (from 12 w) while the igloo device is completely fu nctional in the system. this allows the igloo device to control system power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power. nonvolatile flash technology gives igloo devices t he advantage of being a secure, low power, single- chip solution that is instant on. ig loo is reprogrammable and offers ti me-to-market benefits at an asic- level unit cost. these features e nable designers to create high -density systems using existing asic or fpga design flows and tools. igloo devices offer 1 kbit of on-chip, reprogrammable, nonvolatile flashrom storage as well as clock conditioning circuitry based on an integrated phase-locked loop (pll). the agl015 and agl030 devices have no pll or ram support. igloo devices have up to 1 million syst em gates, supported with up to 144 kbits of true dual-port sram and up to 300 user i/os. m1 igloo devices support the high-performance, 32-bit cortex-m1 processor developed by arm for implementation in fpgas. cortex-m1 is a soft processo r that is fully implemented in the fpga fabric. it has a three-stage pipeline that offers a good balan ce between low power consumption and speed when implemented in an m1 igloo device. the proces sor runs the armv6-m instruction set, has a configurable nested interrupt controller, and can be implemented with or without the debug block. cortex- m1 is available for free from microsemi for use in m1 igloo fpgas. the arm-enabled devices have ordering numbers that begin with m1agl and do not support aes decryption. flash*freeze technology the igloo device offers unique flash*freeze technology , allowing the device to enter and exit ultra-low power flash*freeze mode. igloo devices do not need additional co mponents to turn off i/os or clocks while retaining the design information, sram c ontent, and registers. flash*freeze technology is combined with in-system programmability, which enabl es users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. the ability of igloo v2 devices to support a wide range of core voltage (1.2 v to 1.5 v) al lows further reduction in power consumption, thus achieving the lowest total system power. when the igloo device enters flash*freeze mode, the device automatically shuts off the clocks and inputs to the fpga core; when the device exits flash*freeze mode, all activity resumes and data is retained. the availability of low power modes, combined with reprogrammability, a single-chip and single-voltage solution, and availability of small-footprint, high pi n-count packages, make iglo o devices the best fit for portable electronics.
igloo device family overview 1-2 revision 23 flash advantages low power flash-based igloo devices exhibit power characterist ics similar to those of an asic, making them an ideal choice for power-sensitive applications. ig loo devices have only a very limited power-on current surge and no high-current transition peri od, both of which occur on many fpgas. igloo devices also have low dynamic power consumpt ion to further maximize power savings; power is even further reduced by the us e of a 1.2 v core voltage. low dynamic power consumption, combined with low static power consumption and flash*freeze technology, gives the igloo device the lowest total syst em power offered by any fpga. security nonvolatile, flash-based igloo devices do not require a boot prom, so there is no vulnerable external bitstream that can be easily copied. igloo devices incorporate flashlock, which provides a unique combination of reprogrammability and design securi ty without external overhe ad, advantages that only an fpga with nonvolatile flash programming can offer. igloo devices utilize a 128-bit flas h-based lock and a separate aes key to provide the highest level of protection in the fpga industry for intellectual pr operty and configuration dat a. in addition, all flashrom data in igloo devices can be encrypted prior to lo ading, using the industry-leading aes-128 (fips192) bit block cipher encryption standard. aes was adopted by the national institute of standards and technology (nist) in 2000 and replaces the 1977 des standard. igloo devices have a built-in aes decryption engine and a flash-based aes key that make them the most comprehensive programmable logic device security solution av ailable today. igloo devices with aes-based security provide a high level of protection for remote field updates over p ublic networks such as the internet, and are designed to ensure that valuable ip remains out of the hands of system overbuilders, system cloners, and ip thieves. security, built into the fpga fabric, is an inherent component of the igloo family. the flash cells are located beneath seven metal layers, and many devi ce design and layout techniques have been used to make invasive attacks extremely diff icult. the igloo family, with fl ashlock and aes security, is unique in being highly resistant to both invasive and noninvasive attacks. yo ur valuable ip is protected with industry-standard security, making remote isp possibl e. an igloo device provi des the best available security for programmable logic designs. single chip flash-based fpgas store their configuration informati on in on-chip flash cells. once programmed, the configuration data is an inherent part of the fpga st ructure, and no external configuration data needs to be loaded at system power- up (unlike sram-based fpgas). theref ore, flash-based igloo fpgas do not require system configuration components such as eeproms or microcontrollers to load device configuration data. this reduces bill-of-materials co sts and pcb area, and incr eases security and system reliability. instant on flash-based igloo devices s upport level 0 of the instant on classification standard. this feature helps in system component initialization , execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, a nd bus activity management. the instant on feature of flash-based igloo devi ces greatly simplifies total system desig n and reduces total system cost, often eliminating the need for cplds and clock generation plls. in addition, glitches and brownouts in system power will not corrupt the igloo device's flash configuration, and unlike sram-based fpgas, the device will not have to be reloaded when system power is restored. this enables the reduction or complete removal of the configuration prom, expen sive voltage monitor, brownout detection, and clock generator devices from the pcb des ign. flash-based iglo o devices simplify total system design and reduce cost and design risk while increasing system reliability and impr oving system initialization time. igloo flash fpgas allow the user to quickly enter and exit flash*freeze mode. this is done almost instantly (within 1 s) and the device retains configur ation and data in registers and ram. unlike sram- based fpgas the device does not need to reload conf iguration and design state from external memory components; instead it retains all necessary in formation to resume operation immediately.
igloo low power flash fpgas revision 23 1-3 reduced cost of ownership advantages to the designer extend beyond low unit cost, performance, and ease of use. unlike sram- based fpgas, flash-based igloo devices allow all functionality to be instant on; no external boot prom is required. on-boa rd security mechanisms prevent access to all the programming information and enable secure remote updates of the fpga logic. designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property cannot be comp romised or copied. secure isp can be performed using the industry- standard aes algorithm. the igloo family device ar chitecture mitigates the need for asic migration at higher user volumes. this makes the igloo fa mily a cost-effective asic replacement solution, especially for applications in the consumer, ne tworking/communications, computing, and avionics markets. firm-error immunity firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an sram fpga. the energ y of the collision can ch ange the state of the configuration cell and thus change t he logic, routing, or i/o behavior in an unpredictable way. these errors are impossible to prevent in sram fpgas. the consequence of this type of error can be a complete system failure. firm errors do not exist in the configuration memory of igloo flash-based fpgas. once it is programmed, the flash cell conf iguration element of iglo o fpgas cannot be altered by high-energy neutrons and is ther efore immune to them. recoverable (or soft) errors occur in the user data sram of all fpga devices. these can easily be mitigated by using error detection and correction (edac) circuitry built into the fpga fabric. advanced flash technology the igloo family offers many benefits, includ ing nonvolatility and reprogrammability, through an advanced flash-based, 130-nm lvcmos process with seven layers of metal. standard cmos design techniques are used to implement logic and contro l functions. the combination of fine granularity, enhanced flexible routing resources, and abundant fl ash switches allows for very high logic utilization without compromising device routability or perform ance. logic functions within the device are interconnected through a four-level routing hierarchy. igloo family fpgas utiliz e design and process techniques to minimize power consumption in all modes of operation. advanced architecture the proprietary igloo architecture provides granul arity comparable to standard-cell asics. the igloo device consists of five distinct and programmable architectural features ( figure 1-1 on page 1-4 and figure 1-2 on page 1-4 ): ? flash*freeze technology ? fpga versatiles ? dedicated flashrom ? dedicated sram/fifo memory ? ? extensive cccs and plls ? ? advanced i/o structure the fpga core consists of a sea of versatiles. each versatile can be configured as a three-input logic function, a d-flip-flop (with or without enable), or a latch by progr amming the appropriate flash switch interconnections. the versatility of the igloo core tile as either a three-input lookup table (lut) equivalent or a d-flip-flop/latch with enable allows fo r efficient use of the fpga fabric. the versatile capability is unique to the proasic ? family of third-generation-architecture flash fpgas. ? the agl015 and agl030 do not support pll or sram.
igloo device family overview 1-4 revision 23 versatiles are connected with any of the four levels of routing hierarchy. flash switches are distributed throughout the device to provide nonvolatile, re configurable interconnect programming. maximum core utilization is possible for virtually any design. note: *not supported by agl015 and agl030 devices figure 1-1 ? igloo device architecture over view with two i/o banks (a gl015, agl030, agl060, and agl125) figure 1-2 ? igloo device architecture overvi ew with four i/o banks (a gl250, agl600, agl400, and agl1000) ram block 4,608-bit dual-port sram or fifo block* versatile ccc i/os isp aes decryption* user nonvolatile flashrom flash*freeze technology charge pumps bank 0 bank 1 bank 1 bank 0 bank 0 bank 1 isp aes decryption* user nonvolatile flashrom flash*freeze technology charge pumps ram block 4,608-bit dual-port sram or fifo block (agl600 and agl1000) ram block 4,608-bit dual-port sram or fifo block versatile ccc i/os bank 0 bank 3 bank 3 bank 1 bank 1 bank 2
igloo low power flash fpgas revision 23 1-5 flash*freeze technology the igloo device has an ultra-low power static mode, called flash*freeze mode, which retains all sram and register information and can still quickly return to normal operation. flash*freeze technology enables the user to quickly (within 1 s) enter and exit flash*freeze mode by activating the flash*freeze pin while all power supp lies are kept at their original va lues. in addition, i/os and global i/os can still be driven and can be toggling with out impact on power consum ption, clocks can still be driven or can be toggling without impact on power co nsumption, and the device retains all core registers, sram information, and states. i/o states are trista ted during flash*freeze mode or can be set to a certain state using weak pull-up or pull-down i/o attr ibute configuration. no power is consumed by the i/o banks, clocks, jtag pins, or pll, and the device consumes as little as 5 w in this mode. flash*freeze technology allows the user to switch to active mode on demand, thus simplifying the power management of the device. the flash*freeze pin (active low) can be routed internally to the core to allow the user's logic to decide when it is safe to transition to this mode. it is al so possible to use the flash*freeze pin as a regular i/o if flash*freeze mode usage is not planned, which is advantageous because of the inherent low power static (as low as 12 w) and dynamic cap abilities of the igloo device. refer to figure 1-3 for an illustration of entering/exiting flash*freeze mode. versatiles the igloo core consists of versatiles, which have been enhanced beyond the proasic plus ? core tiles. the igloo versatile supports the following: ? all 3-input logic functions?lut-3 equivalent ? latch with clear or set ? d-flip-flop with clear or set ? enable d-flip-flop with clear or set refer to figure 1-4 for versatile configurations. figure 1-3 ? igloo flash*freeze mode igloo fpga flash*freeze mode control flash*freeze pin figure 1-4 ? versatile configurations x1 y x2 x3 lut-3 data y clk enable clr d-ff data y clk clr d-ff lut-3 equivalent d-flip-flop with clear or set enable d-flip-flop with clear or set
igloo device family overview 1-6 revision 23 user nonvolatile flashrom igloo devices have 1 kbit of on-chip, user-accessible, nonvolatile flashrom. the flashrom can be used in diverse system applications: ? internet protocol addressing (wireless or fixed) ? system calibration settings ? device serialization and/or inventory control ? subscription-based business models (for example, set-top boxes) ? secure key storage for secure communications algorithms ? asset management/tracking ? date stamping ? version management the flashrom is written using the standard igloo ieee 1532 jtag programming interface. the core can be individually programmed (erased and written), and on- chip aes decryption can be used selectively to securely load data over public networ ks (except in the agl015 and agl030 devices), as in security keys stored in the fl ashrom for a user design. the flashrom can be programmed via the jtag progr amming interface, and its contents can be read back either through the jtag programming interface or via direct fpga core addressing. note that the flashrom can only be programmed from the jtag interface and cannot be programmed from the internal logic array. the flashrom is programmed as 8 banks of 128 bits ; however, reading is performed on a byte-by-byte basis using a synchronous interface. a 7-bit address fr om the fpga core defines which of the 8 banks and which of the 16 bytes within that bank are being read. the three most significant bits (msbs) of the flashrom address determine the bank, and the four least significant bits (lsbs) of the flashrom address define the byte. the microsemi development software solutions, libero ? system-on-chip (soc) and designer, have extensive support for the flashrom. one such feat ure is auto-generation of sequential programming files for applications requiring a unique serial number in each part. another feature allows the inclusion of static data for system version contro l. data for the flashr om can be generated qu ickly and easily using libero soc and designer software tools. comprehe nsive programming file support is also included to allow for easy programming of large numbers of parts with differing flashrom contents. sram and fifo igloo devices (except the agl015 and agl030 de vices) have embedded sram blocks along their north and south sides. each variable-aspect-ratio sram block is 4,608 bits in size. available memory configurations are 25618, 5129, 1k4, 2k2, and 4k1 bits. the individual blocks have independent read and write ports that can be configured with diff erent bit widths on each port. for example, data can be sent through a 4-bit port and read as a sing le bitstream. the embedded sram blocks can be initialized via the device jtag port (rom emulat ion mode) using the ujtag macro (except in the agl015 and agl030 devices). in addition, every sram block has an embedded fi fo control unit. the contro l unit allows the sram block to be configured as a synchronous fifo with out using additional core versatiles. the fifo width and depth are programmable. the fifo also feat ures programmable almost empty (aempty) and almost full (afull) flags in addition to the norma l empty and full flags. the embedded fifo control unit contains the counters necessary for generati on of the read and write address pointers. the embedded sram/fifo blocks can be cascaded to create larger configurations. pll and ccc igloo devices provide designers with very flexible clock conditioning circuit (ccc) capabilities. each member of the igloo family contains six cccs. one ccc (center west side) has a pll. the agl015 and agl030 do not have a pll. the six ccc blocks are locate d at the four corners an d the centers of the east and west sides. one ccc (center west side) has a pll. all six ccc blocks are usable; the four corner cccs and the east ccc allo w simple clock delay operations as well as clock spine access.
igloo low power flash fpgas revision 23 1-7 the inputs of the six ccc blocks are accessible from the fpga core or from one of several inputs located near the ccc that have dedicated connections to the ccc block. the ccc block has these key features: ? wide input frequency range (f in_ccc ) = 1.5 mhz up to 250 mhz ? output frequency range (f out_ccc ) = 0.75 mhz up to 250 mhz ? 2 programmable delay types for clock skew minimization ? clock frequency synthesis (for pll only) additional ccc specifications: ? internal phase shift = 0, 90, 180, and 270. output phase shift depends on the output divider configuration (for pll only). ? output duty cycle = 50% 1.5% or better (for pll only) ? low output jitter: worst case < 2.5% clock per iod peak-to-peak period jitter when single global network used (for pll only) ? maximum acquisition time is 300 s (for pll only) ? exceptional tolerance to input period jitter?allowabl e input jitter is up to 1.5 ns (for pll only) ? four precise phases; maximum misalignment bet ween adjacent phases of 40 ps 250 mhz / f out_ccc (for pll only) global clocking igloo devices have extens ive support for multiple clocking domains. in addition to the ccc and pll support described above, there is a compre hensive global clock distribution network. each versatile input and output port has access to nine versanets: six chip (main) and three quadrant global networks. the versanets can be driven by the ccc or directly accessed from the core via multiplexers (muxes). the versanets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets. i/os with advanced i/o standards the igloo family of fpgas features a flexible i/o st ructure, supporting a range of voltages (1.2 v, 1.5 v, 1.8 v, 2.5 v, 3.0 v wide ran ge, and 3.3 v). igloo fpgas support many different i/o standards?single- ended and differential. the i/os are organized into banks, with two or four banks per device. the configuration of these banks determines the i/o standards supported ( table 1-1 ). table 1-1 ? i/o standards supported i/o bank type device and bank location i/o standards supported lvttl/ lvcmos pci/pci-x lvpecl, lvds, b-lvds, m-lvds advanced east and west banks of agl250 and larger devices ?? ? standard plus north and south banks of agl250 and larger devices all banks of agl060 and agl125k ?? not supported standard all banks of agl015 and agl030 ? not supported not supported
igloo device family overview 1-8 revision 23 each i/o module contains several input, output, and enable registers. these registers allow the implementation of the following: ? single-data-rate applications ? double-data-rate applications?ddr lvds, b-lvds, and m-lvds i/os for point-to-point communications igloo banks for the agl250 device and above su pport lvpecl, lvds, b-lvds, and m-lvds. b-lvds and m-lvds can support up to 20 loads. hot-swap (also called hot-plug, or hot-insertion) is t he operation of hot-insertion or hot-removal of a card in a powered-up system. cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating. wide range i/o support igloo devices support jedec-defined wide range i /o operation. igloo devices support both the jesd8-b specification, covering 3 v and 3.3 v supplies, for an effective operating range of 2.7 v to 3.6 v, and jesd8-12 with its 1.2 v nominal, supporti ng an effective operating r ange of 1.14 v to 1.575 v. wider i/o range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components wit h greater tolerances. wide range eases i/o bank management and provides enhanc ed protection from system voltage sp ikes, while providing the flexibility to easily run custom voltage applications. specifying i/o states during programming you can modify the i/o states during programming in fl ashpro. in flashpro, this feature is supported for pdb files generated from designer v8.5 or greater. see the flashpro user?s guide for more information. note: pdb files generated from designer v8.1 to designer v8.4 (including all service packs) have limited display of pin numbers only. 1. load a pdb from the flashpro gui. you must have a pdb loaded to modify the i/o states during programming. 2. from the flashpro gui, click pdb configurat ion. a flashpoint ? pr ogramming file generator window appears. 3. click the specify i/o states during programming button to display the specify i/o states during programming dialog box. 4. sort the pins as desired by clicking any of the column headers to sort the entries by that header. select the i/os you wish to modify ( figure 1-5 on page 1-9 ). 5. set the i/o output state. you can set basic i/o se ttings if you want to use the default i/o settings for your pins, or use custom i/o settings to cust omize the settings for each pin. basic i/o state settings: 1 ? i/o is set to drive out logic high 0 ? i/o is set to drive out logic low last known state ? i/o is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming z -tri-state: i/o is tristated
igloo low power flash fpgas revision 23 1-9 6. click ok to return to the flashpoi nt ? programming file generator window. note: i/o states during programming are saved to the adb and resulting programming files after completing programming file generation. figure 1-5 ? i/o states during programming window

revision 23 2-1 2 ? igloo dc and switching characteristics general specifications operating conditions stresses beyond those listed in ta b l e 2 - 1 may cause permanent damage to the device. exposure to absolute maximum rating conditions for extended periods may affect device reliability. absolute maximum ratings are stress ratings only; functional operation of th e device at these or any other conditions beyond those listed under the recommended operating conditions specified in ta b l e 2 - 2 on page 2-2 is not implied. table 2-1 ? absolute maximum ratings symbol parameter limits 1 units vcc dc core supply voltage ?0.3 to 1.65 v vjtag jtag dc voltage ?0.3 to 3.75 v vpump programming voltage ?0.3 to 3.75 v vccpll analog power supply (pll) ?0.3 to 1.65 v vcci and vmv 2 dc i/o buffer supply voltage ?0.3 to 3.75 v vi i/o input voltage ?0.3 v to 3.6 v (when i/o hot insertion mode is enabled) ?0.3 v to (vcci + 1 v) or 3.6 v, whichever voltage is lower (when i/o hot-insertion mode is disabled) v t stg 3 storage temperature ?65 to +150 c t j 3 junction temperature +125 c notes: 1. the device should be operated within the limits specified by the datasheet. during transitions, the input signal may undershoot or overshoot according to the limits shown in table 2-4 on page 2-3 . 2. vmv pins must be connected to the corresponding vcci pins. see the "pin descriptions" chapter of the igloo fpga fabric user?s guide for further information. 3. for flash programming and retention, maximum limits refer to table 2-3 on page 2-2 , and for recommended operating limits, refer to table 2-2 on page 2-2 .
igloo dc and switching characteristics 2-2 revision 23 table 2-2 ? recommended operating conditions 1 symbol parameter commercial industrial units t a ambient temperature 0 to +70 ?40 to +85 c t j junction temperature 2 0 to +85 ?40 to +100 c vcc 3 1.5 v dc core supply voltage 5 1.425 to 1.575 1.425 to 1.575 v 1.2 v?1.5 v wide range dc core supply voltage 4,6 1.14 to 1.575 1.14 to 1.575 v vjtag jtag dc voltage 1.4 to 3.6 1.4 to 3.6 v vpump programming voltage programming mode 3.15 to 3.45 3.15 to 3.45 v operation 7 0 to 3.6 0 to 3.6 v vccpll 8 analog power supply (pll) 1.5 v dc core supply voltage 5 1.425 to 1.575 1.425 to 1.575 v 1.2 v ? 1.5 v dc core supply voltage 4,6 1.14 to 1.575 1.14 to 1.575 v vcci and vmv 9 1.2 v dc core supply voltage 6 1.14 to 1.26 1.14 to 1.26 v 1.2 v dc wide range dc supply voltage 6 1.14 to 1.575 1.14 to 1.575 v 1.5 v dc supply voltage 1.425 to 1.575 1.425 to 1.575 v 1.8 v dc supply voltage 1.7 to 1.9 1.7 to 1.9 v 2.5 v dc supply voltage 2.3 to 2.7 2.3 to 2.7 v 3.0 v dc supply voltage 10 2.7 to 3.6 2.7 to 3.6 v 3.3 v dc supply voltage 3.0 to 3.6 3.0 to 3.6 v lvds differential i/o 2.375 to 2.625 2.375 to 2.625 v lvpecl differential i/o 3. 0 to 3.6 3.0 to 3.6 v notes: 1. all parameters representing voltages are measured with respect to gnd unless otherwise specified. 2. to ensure targeted reliability standards are met acro ss ambient and junction operating temperatures, microsemi recommends that the user follow best design practices using microsemi?s timing and power simulation tools. 3. the ranges given here are for power supplies only. the recommended input voltage ranges specific to each i/o standard are given in table 2-25 on page 2-24 . vcci should be at the same voltage within a given i/o bank. 4. all igloo devices (v5 and v2) must be programmed with the vcc core voltage at 1.5 v. applications using the v2 devices powered by 1.2 v supply must switch th e core supply to 1.5 v for in-system programming. 5. for igloo ? v5 devices 6. for igloo v2 devices only, operating at vcci ? vcc. 7. vpump can be left floating during operation (not programming mode). 8. vccpll pins should be tied to vcc pins. see the "pin descriptions" chapter of the igloo fpga fabric user?s guide for further information. 9. vmv pins must be connected to the corresponding vcci pins. see the "pin descriptions" chapter of the igloo fpga fabric user?s guide for further information. 10. 3.3 v wide range is compliant to the jesd-8b specification and supports 3.0 v vcci operation. table 2-3 ? flash programming limits ? retention, storage, and operating temperature 1 product grade programming cycles program retention (biased/unbiased) maximum storage temperature t stg (c) 2 maximum operating junction temperature t j (c) 2 commercial 500 20 years 110 100 industrial 500 20 years 110 100 notes: 1. this is a stress rating only; functional operation at any condition other than those indicated is not implied. 2. these limits apply for program/data retention only. refer to table 2-1 on page 2-1 and table 2-2 for device operating conditions and absolute limits.
igloo low power flash fpgas revision 23 2-3 i/o power-up and supply voltage thresholds for power-on reset (commercial and industrial) sophisticated power-up management circuitry is designed into every igloo device. these circuits ensure easy transition from the powered-off state to the powered-up state of the device. the many different supplies can power up in any sequence with mi nimized current spikes or surges. in addition, the i/o will be in a known state through the power-up sequence. the basic principle is shown in figure 2-1 on page 2-4 and figure 2-2 on page 2-5 . there are five regions to consider during power-up. igloo i/os are activated only if all of the following three conditions are met: 1. vcc and vcci are above the minimum specified trip points ( figure 2-1 on page 2-4 and figure 2-2 on page 2-5 ). 2. vcci > vcc ? 0.75 v (typical) 3. chip is in the operating mode. v cci trip point: ramping up (v5 devices): 0.6 v < trip_point_up < 1.2 v ramping down (v5 devices): 0.5 v < trip_point_down < 1.1 v ramping up (v2 devices): 0.75 v < trip_point_up < 1.05 v ramping down (v2 devices): 0.65 v < trip_point_down < 0.95 v v cc trip point: ramping up (v5 devices): 0.6 v < trip_point_up < 1.1 v ramping down (v5 devices): 0.5 v < trip_point_down < 1.0 v ramping up (v2 devices): 0.65 v < trip_point_up < 1.05 v ramping down (v2 devices): 0.55 v < trip_point_down < 0.95 v vcc and vcci ramp-up trip points are about 100 mv hi gher than ramp-down trip points. this specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. note the following: ? during programming, i/os become tristated and weakly pulled up to vcci. ? jtag supply, pll power supplies, and charge pump vpump supply have no influence on i/o behavior. table 2-4 ? overshoot and undershoot limits 1 vcci average vcci?gnd overshoot or undershoot duration as a percentage of clock cycle 2 maximum overshoot/ undershoot 2 2.7 v or less 10% 1.4 v 5% 1.49 v 3 v 10% 1.1 v 5% 1.19 v 3.3 v 10% 0.79 v 5% 0.88 v 3.6 v 10% 0.45 v 5% 0.54 v notes: 1. based on reliability requirements at junction temperature at 85c. 2. the duration is allowed at one out of si x clock cycles. if the overshoot/unders hoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 v. 3. this table does not provide pci overshoot/undershoot limits.
igloo dc and switching characteristics 2-4 revision 23 pll behavior at brownout condition microsemi recommends using monotonic power supplie s or voltage regulators to ensure proper power- up behavior. power ramp-up should be monotonic at least until vcc and vccplx exceed brownout activation levels (see figure 2-1 and figure 2-2 on page 2-5 for more details). when pll power supply voltage and/or vcc levels drop below the vcc brownout levels (0.75 v 0.25 v for v5 devices, and 0.75 v 0.2 v for v2 device s), the pll output lock signal goes low and/or the output clock is lost. refer to the brownout voltage section in the "power-up/-down behavior of low power flash devices" chapter of the proasic ? 3 and proasic3e fpga fabric user?s guides for information on clock and lock recovery. internal power-up activation sequence 1. core 2. input buffers 3. output buffers, after 200 ns delay from input buffer activation to make sure the transition from input buffers to output buffers is clean, en sure that there is no path longer than 100 ns from input buffer to output buffer in your design. figure 2-1 ? v5 devices ? i/o state as a function of vcci and vcc voltage levels region 1: i/o buffers are off region 2: i/o buffers are on. i/os are functional (except differential inputs) but slower because vcci / vcc are below specification. for the same reason, input buffers do not meet vih / vil levels, and output buffers do not meet voh / vol levels. min vcci datasheet specification voltage at a selected i/o standard; i.e., 1.425 v or 1.7 v or 2.3 v or 3.0 v vcc vcc = 1.425 v region 1: i/o buffers are off activation trip point: v a = 0.85 v 0.25 v deactivation trip point: v d = 0.75 v 0.25 v activation trip point: v a = 0.9 v 0.3 v deactivation trip point: v d = 0.8 v 0.3 v vcc = 1.575 v region 5: i/o buffers are on and power supplies are within specification. i/os meet the entire datasheet and timer specifications for speed, vih / vil, voh / vol, etc. region 4: i/o buffers are on. i/os are functional (except differential inputs) but slower because vcci is below specification. for the same reason, input buffers do not meet vih / vil levels, and output buffers do not meet voh / vol levels. where vt can be from 0.58 v to 0.9 v (typically 0.75 v) vcci region 3: i/o buffers are on. i/os are functional; i/o dc specifications are met, but i/os are slower because the vcc is below specification. vcc = vcci + vt
igloo low power flash fpgas revision 23 2-5 thermal characteristics introduction the temperature variable in the designer software re fers to the junction temperature, not the ambient temperature. this is an importan t distinction because dynamic and st atic power consumption cause the chip junction to be higher than the ambient temperature. eq 1 can be used to calculate junction temperature. t j = junction temperature = ? t + t a eq 1 where: t a = ambient temperature ? t = temperature gradient between junction (silicon) and ambient ? t = ? ja * p ? ja = junction-to-ambient of the package. ? ja numbers are located in table 2-5 on page 2-6 . p = power dissipation figure 2-2 ? v2 devices ? i/o state as a function of vcci and vcc voltage levels region 1: i/o buffers are off region 2: i/o buffers are on. i/os are functional (except differential inputs) but slower because vcci/vcc are below specification. for the same reason, input buffers do not meet vih/vil levels, and output buffers do not meet voh/vol levels. min vcci datasheet specification voltage at a selected i/o standard; i.e., 1.14 v,1.425 v, 1.7 v, 2.3 v, or 3.0 v vcc vcc = 1.14 v region 1: i/o buffers are off activation trip point: v a = 0.85 v 0.2 v deactivation trip point: v d = 0.75 v 0.2 v activation trip point: v a = 0.9 v 0.15 v deactivation trip point: v d = 0.8 v 0.15 v vcc = 1.575 v region 5: i/o buffers are on and power supplies are within specification. i/os meet the entire datasheet and timer specifications for speed, vih / vil , voh / vol , etc. region 4: i/o buffers are on. i/os are functional (except differential inputs) but slower because vcci is below specification. for the same reason, input buffers do not meet vih / vil levels, and output buffers do not meet voh / vol levels. where vt can be from 0.58 v to 0.9 v (typically 0.75 v) vcci region 3: i/o buffers are on. i/os are functional; i/o dc specifications are met, but i/os are slower because the vcc is below specification. vcc = vcci + vt
igloo dc and switching characteristics 2-6 revision 23 package thermal characteristics the device junction-to-case thermal resistivity is ? jc and the junction-to-ambient air thermal resistivity is ? ja . the thermal characteristics for ? ja are shown for two air flow rates. the absolute maximum junction temperature is 100c. eq 2 shows a sample calculation of the absolute maximum power dissipation allowed for the agl1000-fg484 package at co mmercial temperature and in still air. eq 2 disclaimer: the simulation for determining the junction-to-air thermal resistance is based on jedec standards (jesd51) and assumptions made in building the mode l. junction-to-case is based on semi g38-88. jesd51 is only used for comparing one package to another package, provided the two tests uses the same condition. they have little relevance in ac tual application and theref ore should be used with a degree of caution. maximum power allowed max. junction temp. ( ? c) max. ambient temp. ( ? c) ? ? ja ( ? c/w) ------------------------------------------------------------------------------------------------------------------------------- ----------- 100 ? c70 ? c ? 23.3c/w ------------------------------------- 1.28 w = = = table 2-5 ? package thermal resistivities package type device pin count ? j c ? ja unit still air 1 m/s 2.5 m/s quad flat no lead (qn) ag l030 132 13.1 21.4 16.8 15.3 c/w agl060 132 11.0 21.2 16.6 15.0 c/w agl125 132 9.2 21.1 16.5 14.9 c/w agl250 132 8.9 21.0 16.4 14.8 c/w agl030 68 13.4 68.4 45.8 43.1 c/w very thin quad flat pack (vq)* 100 10.0 35.3 29.4 27.1 c/w chip scale package (cs) agl1000 281 6.0 28.0 22.8 21.5 c/w agl400 196 7.2 37.1 31.1 28.9 c/w agl250 196 7.6 38.3 32.2 30.0 c/w agl125 196 8.0 39.5 33.4 31.1 c/w agl030 81 12.4 32.8 28.5 27.2 c/w agl060 81 11.1 28.8 24.8 23.5 c/w agl250 81 10.4 26.9 22.3 20.9 c/w micro chip scale package (uc) agl030 81 16.9 40.6 35.2 33.7 c/w fine pitch ball grid array (fg) agl060 144 18.6 55.2 49.4 47.2 c/w agl1000 144 6.3 31.6 26.2 24.2 c/w agl400 144 6.8 37.6 31.2 29.0 c/w agl250 256 12.0 38.6 34.7 33.0 c/w agl1000 256 6.6 28.1 24.4 22.7 c/w agl1000 484 8.0 23.3 19.0 16.7 c/w note: *thermal resistances for other device-package co mbinations will be posted in a later revision.
igloo low power flash fpgas revision 23 2-7 temperature and voltage derating factors calculating power dissipation quiescent supply current quiescent supply current (idd) calculation depends on multiple factors, including operating voltages (vcc, vcci, and vjtag), operating temperature, system clock frequency, and power modes usage. microsemi recommends using the powercalculator and smartpower software estimation tools to evaluate the projected static and active power bas ed on the user design, pow er mode usage, operating voltage, and temperature. table 2-6 ? temperature and voltage derating factor s for timing delays (normalized to t j = 70c, vcc = 1.425 v) for igloo v2 or v5 devices, 1.5 v dc core supply voltage array voltage vcc (v) junction temperature (c) ?40c 0c 25c 70c 85c 100c 1.425 0.934 0.953 0.971 1.000 1.007 1.013 1.500 0.855 0.874 0.891 0.917 0.924 0.929 1.575 0.799 0.816 0.832 0.857 0.864 0.868 table 2-7 ? temperature and voltage derating factor s for timing delays (normalized to t j = 70c, vcc = 1.14 v) for igloo v2, 1.2 v dc core supply voltage array voltage vcc (v) junction temperature (c) ?40c 0c 25c 70c 85c 100c 1.14 0.967 0.978 0.991 1.000 1.006 1.010 1.20 0.864 0.874 0.885 0.894 0.899 0.902 1.26 0.794 0.803 0.814 0.821 0.827 0.830 table 2-8 ? power supply state per mode power supply configurations modes/power supplies vcc vccpll vcci vjtag vpump flash*freeze on on on on on/off/floating sleep off off on off off shutdown off off off off off no flash*freeze on on on on on/off/floating note: off: power supply level = 0 v table 2-9 ? quiescent supply current (idd) charac teristics, igloo flash*freeze mode* core voltage agl015 agl030 agl060 agl125 agl250 agl400 agl600 agl1000 units typical (25c) 1.2 v 4 4 8 13 20 27 30 44 a 1.5 v 6 6 10 18 34 51 72 127 a note: *idd includes vcc, vpump, vcci, vccpll, and vmv curr ents. values do not incl ude i/o static contribution, which is shown in table 2-13 on page 2-10 through table 2-15 on page 2-11 and table 2-16 on page 2-11 through table 2-18 on page 2-12 (pdc6 and pdc7).
igloo dc and switching characteristics 2-8 revision 23 table 2-10 ? quiescent supply current (idd) ch aracteristics, igloo sleep mode* core voltage agl015 agl030 agl060 agl125 agl250 agl400 agl600 agl1000 units vcci/ vjtag = 1.2 v (per bank) typical (25c) 1.2 v 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 a vcci/vjtag = 1.5 v (per bank) typical (25c) 1.2 v / 1.5 v 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 a vcci/vjtag = 1.8 v (per bank) typical (25c) 1.2 v / 1.5 v 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 a vcci/vjtag = 2.5 v (per bank) typical (25c) 1.2 v / 1.5 v 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 a vcci/vjtag = 3.3 v (per bank) typical (25c) 1.2 v / 1.5 v 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 a note: idd = n banks icci. values do not include i/o static contribution, which is shown in table 2-13 on page 2-10 through table 2-15 on page 2-11 and table 2-16 on page 2-11 through table 2-18 on page 2-12 (pdc6 and pdc7). table 2-11 ? quiescent supply current (idd) char acteristics, igloo shutdown mode core voltage agl015 agl030 units typical (25c) 1.2 v / 1.5 v 0 0 a
igloo low power flash fpgas revision 23 2-9 table 2-12 ? quiescent supply current (idd), no igloo flash*freeze mode 1 core voltage agl015 agl030 agl060 agl125 agl250 agl400 agl600 agl1000 units icca current 2 typical (25c) 1.2 v 5 6 10 13 18 25 28 42 a 1.5 v 14 16 20 28 44 66 82 137 a icci or ijtag current 3 vcci/vjtag = 1.2 v (per bank) typical (25c) 1.2 v 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 a vcci/vjtag = 1.5 v (per bank) typical (25c) 1.2 v / 1.5 v 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 a vcci/vjtag = 1.8 v (per bank) typical (25c) 1.2 v / 1.5 v 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 a vcci/vjtag = 2.5 v (per bank) typical (25c) 1.2 v / 1.5 v 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 a vcci/vjtag = 3.3 v (per bank) typical (25c) 1.2 v / 1.5 v 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 a notes: 1. idd = n banks icci + icca. jtag counts as one bank when powered. 2. includes vcc, vpump, and vccpll currents. 3. values do not include i/o static contribution (pdc6 and pdc7).
igloo dc and switching characteristics 2-10 revision 23 power per i/o pin table 2-13 ? summary of i/o input buffe r power (per pin) ? defa ult i/o software settings applicable to advanced i/o banks vcci (v) static power pdc6 (mw) 1 dynamic power pac9 (w/mhz) 2 single-ended 3.3 v lvttl / 3.3 v lvcmos 3.3 ? 16.27 3.3v lvcmos wide range 3 3.3 ? 16.27 2.5 v lvcmos 2.5 ? 4.65 1.8 v lvcmos 1.8 ? 1.61 1.5 v lvcmos (jesd8-11) 1.5 ? 0.96 1.2 v lvcmos 4 1.2 ? 0.58 1.2 v lvcmos wide range 4 1.2 ? 0.58 3.3 v pci 3.3 ? 17.67 3.3 v pci-x 3.3 ? 17.67 differential lvds 2.5 2.26 23.39 lvpecl 3.3 5.72 59.05 notes: 1. p dc6 is the static power (where applicable) measured on vcci. 2. p ac9 is the total dynamic power measured on vcci. 3. all lvcmos 3.3 v software macros support lvcmos 3.3 v wide range as specified in the jesd-8b specification. 4. applicable for igloo v2 devices only table 2-14 ? summary of i/o input buffe r power (per pin) ? defa ult i/o software settings applicable to standard plus i/o banks vcci (v) static power pdc6 (mw) 1 dynamic power pac9 (w/mhz) 2 single-ended 3.3 v lvttl / 3.3 v lvcmos 3.3 ? 16.41 3.3v lvcmos wide range 3 3.3 ? 16.41 2.5 v lvcmos 2.5 ? 4.75 1.8 v lvcmos 1.8 ? 1.66 1.5 v lvcmos (jesd8-11) 1.5 ? 1.00 1.2 v lvcmos 4 1.2 ? 0.61 1.2 v lvcmos wide range 4 1.2 ? 0.61 3.3 v pci 3.3 ? 17.78 3.3 v pci-x 3.3 ? 17.78 notes: 1. pdc6 is the static power (where applicable) measured on vcci. 2. pac9 is the total dynamic power measured on vcci. 3. applicable for igloo v2 devices only. 4. all lvcmos 3.3 v software macros support lvcmos 3.3 v wide range as specified in the jesd-8b specification.
igloo low power flash fpgas revision 23 2-11 table 2-15 ? summary of i/o input buffe r power (per pin) ? defa ult i/o software settings applicable to standard i/o banks vcci (v) static power pdc6 (mw) 1 dynamic power pac9 (w/mhz) 2 single-ended 3.3 v lvttl / 3.3 v lvcmos 3.3 ? 17.24 3.3v lvcmos wide range 3 3.3 ? 17.24 2.5 v lvcmos 2.5 ? 5.64 1.8 v lvcmos 1.8 ? 2.63 1.5 v lvcmos (jesd8-11) 1.5 ? 1.97 1.2 v lvcmos 4 1.2 ? 0.57 1.2 v lvcmos wide range 4 1.2 ? 0.57 notes: 1. pdc6 is the static power (where applicable) measured on vcci. 2. pac9 is the total dynamic power measured on vcci. 3. all lvcmos 3.3 v software macros support lvcmos 3.3 v wide range as specified in the jesd-8b specification. 4. applicable for igloo v2 devices only. table 2-16 ? summary of i/o output bu ffer power (per pin) ? de fault i/o softw are settings 1 applicable to advanced i/o banks c load (pf) vcci (v) static power pdc7 (mw) 2 dynamic power pac10 (w/mhz) 3 single-ended 3.3 v lvttl / 3.3 v lvcmos 5 3.3 ? 136.95 3.3v lvcmos wide range 4 5 3.3 ? 136.95 2.5 v lvcmos 5 2.5 ? 76.84 1.8 v lvcmos 5 1.8 ? 49.31 1.5 v lvcmos (jesd8-11) 5 1.5 ? 33.36 1.2 v lvcmos 5 5 1.2 ? 16.24 1.2 v lvcmos wide range 5 5 1.2 ? 16.24 3.3 v pci 10 3.3 ? 194.05 3.3 v pci-x 10 3.3 ? 194.05 differential lvds ? 2.5 7.74 156.22 lvpecl ? 3.3 19.54 339.35 notes: 1. dynamic power consumption is given for standard load and software default drive strength and output slew. 2. pdc7 is the static power (where applicable) measured on vcci. 3. pac10 is the total dynamic power measured on vcci. 4. all lvcmos 3.3 v software macros support lvcmos 3.3 v wide range as specified in the jesd-8b specification. 5. applicable for igloo v2 devices only.
igloo dc and switching characteristics 2-12 revision 23 table 2-17 ? summary of i/o output bu ffer power (per pin) ? de fault i/o softw are settings 1 applicable to standard plus i/o banks c load (pf) vcci (v) static power pdc7 (mw) 2 dynamic power pac10 (w/mhz) 3 single-ended 3.3 v lvttl / 3.3 v lvcmos 5 3.3 ? 122.16 3.3v lvcmos wide range 4 5 3.3 ? 122.16 2.5 v lvcmos 5 2.5 ? 68.37 1.8 v lvcmos 5 1.8 ? 34.53 1.5 v lvcmos (jesd8-11) 5 1.5 ? 23.66 1.2 v lvcmos 5 5 1.2 ? 14.90 1.2 v lvcmos wide range 5 5 1.2 ? 14.90 3.3 v pci 10 3.3 ? 181.06 3.3 v pci-x 10 3.3 ? 181.06 notes: 1. dynamic power consumption is given for standard load and software default drive strength and output slew. 2. p dc7 is the static power (where applicable) measured on vcci. 3. p ac10 is the total dynamic power measured on vcci. 4. all lvcmos 3.3 v software macros support lvcmos 3.3 v wide range as specified in the jesd-8b specification. 5. applicable for igloo v2 devices only. table 2-18 ? summary of i/o output bu ffer power (per pin) ? de fault i/o softw are settings 1 applicable to standard i/o banks c load (pf) vcci (v) static power pdc7 (mw) 2 dynamic power pac10 (w/mhz) 3 single-ended 3.3 v lvttl / 3.3 v lvcmos 5 3.3 ? 104.38 3.3v lvcmos wide range 4 5 3.3 ? 104.38 2.5 v lvcmos 5 2.5 ? 59.86 1.8 v lvcmos 5 1.8 ? 31.26 1.5 v lvcmos (jesd8-11) 5 1.5 ? 21.96 1.2 v lvcmos 5 5 1.2 ? 13.49 1.2 v lvcmos wide range 5 5 1.2 ? 13.49 notes: 1. dynamic power consumption is given for standard load and software default drive strength and output slew. 2. pdc7 is the static power (where applicable) measured on vcci. 3. pac10 is the total dynamic power measured on vcci. 4. all lvcmos 3.3 v software macros support lvcmos 3.3 v wide range as specified in the jesd-8b specification. 5. applicable for igloo v2 devices only.
igloo low power flash fpgas revision 23 2-13 power consumption of vari ous internal resources table 2-19 ? different components contributing to dynamic power consumption in igloo devices for igloo v2 or v5 devices, 1.5 v dc core supply voltage parameter definition device specific dynamic power (w/mhz) agl1000 agl600 agl400 agl250 agl125 agl060 agl030 agl015 pac1 clock contribution of a global rib 7.778 6.221 6.082 4.460 4.446 2.736 0.000 0.000 pac2 clock contribution of a global spine 4.334 3.512 2.759 2.718 1.753 1.971 3.483 3.483 pac3 clock contribution of a versatile row 1.379 1.445 1.377 1.483 1.467 1.503 1.472 1.472 pac4 clock contribution of a versatile used as a sequential module 0.151 0.149 0.151 0.149 0.149 0.151 0.146 0.146 pac5 first contribution of a versatile used as a sequential module 0.057 pac6 second contribution of a versatile used as a sequential module 0.207 pac7 contribution of a versatile used as a combinatorial module 0.276 0.262 0.279 0.277 0.280 0.300 0.281 0.273 pac8 average contribution of a routing net 1.161 1.147 1.193 1.273 1.076 1.088 1.134 1.153 pac9 contribution of an i/o input pin (standard- dependent) see table 2-13 on page 2-10 through table 2-15 on page 2-11 . pac10 contribution of an i/o output pin (standard- dependent) see table 2-16 on page 2-11 through table 2-18 on page 2-12 . pac11 average contribution of a ram block during a read operation 25.00 pac12 average contribution of a ram block during a write operation 30.00 pac13 dynamic pll contribution 2.70 note: for a different output load, drive strength, or slew rate, microsemi recommends using the microsemi power spreadsheet calculator or smartpower tool in libero soc.
igloo dc and switching characteristics 2-14 revision 23 table 2-20 ? different components contributing to the static powe r consumption in igloo devices for igloo v2 or v5 devices, 1.5 v dc core supply voltage parameter definition device-specific static power (mw) agl1000 agl600 agl400 agl250 agl125 agl060 agl030 agl015 pdc1 array static power in active mode see table 2-12 on page 2-9 . pdc2 array static power in static (idle) mode see table 2-11 on page 2-8 . pdc3 array static power in flash*freeze mode see table 2-9 on page 2-7 . pdc4 static pll contribution 1.84 pdc5 bank quiescent power (v cci -dependent) see table 2-12 on page 2-9 . pdc6 i/o input pin static power (standard-dependent) see table 2-13 on page 2-10 through table 2-15 on page 2-11 . pdc7 i/o output pin static power (standard-dependent) see table 2-16 on page 2-11 through table 2-18 on page 2-12 . note: *for a different output load, drive strength, or slew rate, microsemi recommends using the microsemi power spreadsheet calculator or smartpower tool in libero soc.
igloo low power flash fpgas revision 23 2-15 table 2-21 ? different components contributing to dynamic power consumption in igloo devices for igloo v2 devices, 1.2 v dc core supply voltage parameter definition device specific dynamic power (w/mhz) agl1000 agl600 agl400 agl250 agl125 agl060 agl030 agl015 pac1 clock contribution of a global rib 4.978 3.982 3.892 2.854 2.845 1.751 0.000 0.000 pac2 clock contribution of a global spine 2.773 2.248 1.765 1.740 1.122 1.261 2.229 2.229 pac3 clock contribution of a versatile row 0.883 0.924 0.881 0.949 0.939 0.962 0.942 0.942 pac4 clock contribution of a versatile used as a sequential module 0.096 0.095 0.096 0.095 0.095 0.096 0.094 0.094 pac5 first contribution of a versatile used as a sequential module 0.045 pac6 second contribution of a versatile used as a sequential module 0.186 pac7 contribution of a versatile used as a combinatorial module 0.158 0.149 0.158 0.157 0.160 0.170 0.160 0.155 pac8 average contribution of a routing net 0.756 0.729 0.753 0.817 0.678 0.692 0.738 0.721 pac9 contribution of an i/o input pin (standard- dependent) see table 2-13 on page 2-10 through table 2-15 on page 2-11 . pac10 contribution of an i/o output pin (standard- dependent) see table 2-16 on page 2-11 through table 2-18 on page 2-12 . pac11 average contribution of a ram block during a read operation 25.00 pac12 average contribution of a ram block during a write operation 30.00 pac13 dynamic pll contribution 2.10 note: for a different output load, drive strength, or slew rate, microsemi recommends using the microsemi power spreadsheet calculator or smartpower tool in libero soc.
igloo dc and switching characteristics 2-16 revision 23 table 2-22 ? different components contributing to the static power consumption in igloo device for igloo v2 devices, 1.2 v dc core supply voltage parameter definition device specific static power (mw) agl1000 agl600 agl400 agl250 agl125 agl060 agl030 agl015 pdc1 array static power in active mode see table 2-12 on page 2-9 . pdc2 array static power in static (idle) mode see table 2-11 on page 2-8 . pdc3 array static power in flash*freeze mode see table 2-9 on page 2-7 . pdc4 static pll contribution 0.90 pdc5 bank quiescent power (vcci-dependent) see table 2-12 on page 2-9 . pdc6 i/o input pin static power (standard-dependent) see table 2-13 on page 2-10 through table 2-15 on page 2-11 . pdc7 i/o output pin static power (standard- dependent) see table 2-16 on page 2-11 through table 2-18 on page 2-12 . note: for a different output load, drive st rength, or slew rate, microsemi recommends using t he microsemi power spreadsheet calculator or smartpower tool in libero soc.
igloo low power flash fpgas revision 23 2-17 power calculation methodology this section describes a simplified method to estima te power consumption of an application. for more accurate and detailed power estimations, use the smartpower tool in microsemi libero soc software. the power calculation methodology described below uses the following variables: ? the number of plls as well as the number a nd the frequency of each output clock generated ? the number of combinatorial and sequential cells used in the design ? the internal clock frequencies ? the number and the standard of i/o pins used in the design ? the number of ram blocks used in the design ? toggle rates of i/o pins as well as versatiles?guidelines are provided in table 2-23 on page 2-19 . ? enable rates of output buffers?guidelines are provided for typical applications in table 2-24 on page 2-19 . ? read rate and write rate to the memory?guidel ines are provided for typical applications in table 2-24 on page 2-19 . the calculation should be repeated for each clock domain defined in the design. methodology total power consumption?p total p total = p stat + p dyn p stat is the total static power consumption. p dyn is the total dynamic power consumption. total static power consumption?p stat p stat = (p dc1 or p dc2 or p dc3 ) + n banks * p dc5 + n inputs * p dc6 + n outputs * p dc7 n inputs is the number of i/o input buffers used in the design. n outputs is the number of i/o output buffers used in the design. n banks is the number of i/o banks powered in the design. total dynamic power consumption?p dyn p dyn = p clock + p s-cell + p c-cell + p net + p inputs + p outputs + p memory + p pll global clock contribution?p clock p clock = (p ac1 + n spine * p ac2 + n row * p ac3 + n s-cell * p ac4 ) * f clk n spine is the number of global spines used in the user design?guidelines are provided in the "spine architecture" section of the igloo fpga fabric user?s guide. n row is the number of versatile rows used in the design?guidelines are provided in the "spine architecture" section of the igloo fpga fabric user?s guide. f clk is the global clock signal frequency. n s-cell is the number of versatiles used as sequential modules in the design. p ac1 , p ac2 , p ac3 , and p ac4 are device-dependent. sequential cells contribution?p s-cell p s-cell = n s-cell * (p ac5 + ? 1 / 2 * p ac6 ) * f clk n s-cell is the number of versatiles used as sequential modules in the design. when a multi-tile sequential cell is used, it should be accounted for as 1. ? 1 is the toggle rate of versatile outputs?guidelines are provided in table 2-23 on page 2-19 . f clk is the global clock signal frequency.
igloo dc and switching characteristics 2-18 revision 23 combinatorial cells contribution?p c-cell p c-cell = n c-cell * ? 1 / 2 * p ac7 * f clk n c-cell is the number of versatiles used as combinatorial modules in the design. ? 1 is the toggle rate of versatile outputs?guidelines are provided in table 2-23 on page 2-19 . f clk is the global clock signal frequency. routing net contribution?p net p net = (n s-cell + n c-cell ) * ? 1 / 2 * p ac8 * f clk n s-cell is the number of versatiles used as sequential modules in the design. n c-cell is the number of versatiles used as combinatorial modules in the design. ? 1 is the toggle rate of versatile outputs?guidelines are provided in table 2-23 on page 2-19 . f clk is the global clock signal frequency. i/o input buffer contribution?p inputs p inputs = n inputs * ? 2 / 2 * p ac9 * f clk n inputs is the number of i/o input buffers used in the design. ? 2 is the i/o buffer toggle rate?guidelines are provided in table 2-23 on page 2-19 . f clk is the global clock signal frequency. i/o output buffer contribution?p outputs p outputs = n outputs * ? 2 / 2 * ? 1 * p ac10 * f clk n outputs is the number of i/o output buffers used in the design. ? 2 is the i/o buffer toggle rate?guidelines are provided in table 2-23 on page 2-19 . ? 1 is the i/o buffer enable rate?guidelines are provided in table 2-24 on page 2-19 . f clk is the global clock signal frequency. ram contribution?p memory p memory = p ac11 * n blocks * f read-clock * ? 2 + p ac12 * n block * f write-clock * ? 3 n blocks is the number of ram blocks used in the design. f read-clock is the memory read clock frequency. ? 2 is the ram enable rate for read operations. f write-clock is the memory write clock frequency. ? 3 is the ram enable rate for write operations?guidelines are provided in table 2-24 on page 2-19 . pll contribution?p pll p pll = p dc4 + p ac13 *f clkout f clkout is the output clock frequency. ? ? if a pll is used to generate more than one output clock, incl ude each output clock in the formula by adding its corresponding contribution (p ac13 * f clkout product) to the total pll contribution.
igloo low power flash fpgas revision 23 2-19 guidelines toggle rate definition a toggle rate defines the frequency of a net or logic elem ent relative to a clock. it is a percentage. if the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. below are some examples: ? the average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency. ? the average toggle rate of an 8-bit counter is 25%: ? bit 0 (lsb) = 100% ? bit 1 = 50% ? bit 2 = 25% ?? ? bit 7 (msb) = 0.78125% ? average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8 enable rate definition output enable rate is the average percentage of ti me during which tristate outputs are enabled. when nontristate output buffers are used, the enable rate should be 100%. table 2-23 ? toggle rate guidelines recommended for power calculation component definition guideline ? 1 toggle rate of versatile outputs 10% ? 2 i/o buffer toggle rate 10% table 2-24 ? enable rate guidelines reco mmended for power calculation component definition guideline ? 1 i/o output buffer enable rate 100% ? 2 ram enable rate for read operations 12.5% ? 3 ram enable rate for write operations 12.5%
igloo dc and switching characteristics 2-20 revision 23 user i/o characteristics timing model figure 2-3 ? timing model operating conditions: std. speed, commercial temperature range (t j = 70c), worst-case vcc = 1.425 v, for dc 1.5 v core voltag e, applicable to v2 and v5 devices dq y y dq dq dq y combinational cell combinational cell combinational cell i/o module (registered) i/o module (non-registered) register cell register cell i/o module (registered) i/o module (non-registered) lvpecl (applicable to advanced i/o banks only)l lvpecl (applicable to advanced i/o banks only) lvds, blvds, m-lvds (applicable for advanced i/o banks only) lvttl 3.3 v output drive strength = 12 ma high slew rate y combinational cell y combinational cell y combinational cell i/o module (non-registered) lvttl output drive strength = 8 ma high slew rate i/o module (non-registered) lvcmos 1.5 v output drive strength = 4 ma high slew rate lvttl output drive strength = 12 ma high slew rate i/o module (non-registered) input lvttl clock input lvttl clock input lvttl clock t pd = 1.22 ns t pd = 1.20 ns t dp = 1.72 ns t pd = 1.80 ns t dp = 3.05 ns (advanced i/o banks) t pd = 1.49 ns t dp = 4.12 ns (advanced i/o banks) t pd = 0.86 ns t dp = 4.42 ns (advanced i/o banks) t pd = 0.92 ns t py = 0.87 ns (advanced i/o banks) t clkq = 0.90 ns t oclkq = 1.02 ns t sud = 0.82 ns t osud = 0.52 ns t dp = 3.05 ns (advanced i/o banks) t py = 0.87 ns (advanced i/o banks) t py = 1.35 ns t clkq = 0.90 ns t sud = 0.82 ns t py = 0.87 ns (advanced i/o banks) t iclkq = 0.43 ns t isud = 0.47 ns t py = 1.20 ns
igloo low power flash fpgas revision 23 2-21 figure 2-4 ? input buffer timing model and delays (example) t py (r) pad y v trip gnd t py (f) v trip 50% 50% vih vcc vil t din (r) din gnd t din (f) 50% 50% vcc pad y t py d clk q i/o interface din t din to array t py = max(t py (r), t py (f)) t din = max(t din (r), t din (f))
igloo dc and switching characteristics 2-22 revision 23 figure 2-5 ? output buffer model and delays (example) t dp (r) pad v ol t dp (f) vtrip vtrip voh vcc d 50% 50% vcc 0 v dout 50% 50% 0 v t dout (r) t dout (f) from array pad t dp std load d clk q i/o interface dout d t dout t dp = max(t dp (r), t dp (f)) t dout = max(t dout (r), t dout (f))
igloo low power flash fpgas revision 23 2-23 figure 2-6 ? tristate output buffer timing model and delays (example) d clk q d clk q 10% vcci t zl vtrip 50% t hz 90% vcci t zh vtrip 50% 50% t lz 50% eout pad d e 50% t eout (r) 50% t eout (f) pad dout eout d i/o interface e t eout t zls vtrip 50% t zhs vtrip 50% eout pad d e 50% 50% t eout (r) t eout (f) 50% vcc vcc vcc vcci vcc vcc vcc voh vol vol t zl , t zh , t hz , t lz , t zls , t zhs t eout = max(t eout (r), t eout (f))
igloo dc and switching characteristics 2-24 revision 23 overview of i/o performance summary of i/o dc input and output levels ? default i/o software settings table 2-25 ? summary of maximum and minimum dc input and output levels applicable to commercial and industrial conditions?s oftware default settings applicable to advanced i/o banks i/o standard drive strength equivalent software default drive strength option 2 slew rate vil vih vol voh iol 1 ioh 1 min.v max. v min. v max. v max. v min. vmama 3.3 v lvttl / 3.3 v lvcmos 12 ma 12 ma high ?0.3 0.8 2 3.6 0.4 2.4 12 12 3.3 v lvcmos wide range 3 100 a 12 ma high ?0.3 0.8 2 3.6 0.2 vcci ? 0.2 0.1 0.1 2.5 v lvcmos 12 ma 12 ma high ?0.3 0.7 1.7 2.7 0.7 1.7 12 12 1.8 v lvcmos 12 ma 12 ma high ?0.3 0.35 * vcci 0.65 * vcci 1.9 0.45 vcci ? 0.45 12 12 1.5 v lvcmos 12 ma 12 ma high ?0.3 0.35 * vcci 0. 65 * vcci 1.575 0.25 * vcci 0.75 * vcci 12 12 1.2 v lvcmos 4 2 ma 2 ma high ?0.3 0.35 * vcci 0.65 * vcci 1.26 0.25 * vcci 0.75 * vcci 2 2 1.2 v lvcmos wide range 4,5 100 a 2 ma high ?0.3 0.3 * vcci 0.7 * vcci 1.575 0.1 v cci ? 0.1 0.1 0.1 3.3 v pci per pci specifications 3.3 v pci-x per pci-x specifications notes: 1. currents are measured at 85c junction temperature. 2. the minimum drive strength for any lvcmos 1.2 v or lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strength displayed in the software is supported for normal range only. for a detailed i/v curve, refer to the ibis models. 3. all lvmcos 3.3 v software macros support lvcmos 3.3 v wide range as specified in the jesd-8b specification. 4. applicable to v2 devices operating at vcci ?? vcc. 5. all lvcmos 1.2 v software macros s upport lvcmos 1.2 v wide range as specified in the jesd8-12 specification.
igloo low power flash fpgas revision 23 2-25 table 2-26 ? summary of maximum and minimum dc input and output levels applicable to commercial and industrial conditions?s oftware default settings applicable to standard plus i/o banks i/o standard drive strength equivalent software default drive strength option 2 slew rate vil vih vol voh i ol i oh min. v max. v min. v max. v max. v min. vmama 3.3 v lvttl / 3.3 v lvcmos 12 ma 12 ma high ?0.3 0.8 2 3.6 0.4 2.4 12 12 3.3 v lvcmos wide range 3 100 a 12 ma high ?0.3 0.8 2 3.6 0.2 vdd-0.2 0.1 0.1 2.5 v lvcmos 12 ma 12 ma high ?0.3 0.7 1.7 2.7 0.7 1.7 12 12 1.8 v lvcmos 8 ma 8 ma high ?0.3 0.35 * vcci 0.65 * vcci 1.9 0.45 vcci ? 0.45 8 8 1.5 v lvcmos 4 ma 4 ma high ?0.3 0.35 * vcci 0.65 * vcci 1.575 0.25 * vcci 0.75 * vcci 4 4 1.2 v lvcmos 4 2 ma 2 ma high ?0.3 0.35 * vcci 0.65 * vcci 1.26 0.25 * vcci 0.75 * vcci 2 2 1.2 v lvcmos wide range 4 100 a 2 ma high ?0.3 0.3 * vcci 0.7 * vcci 1.575 0.1 vcci ? 0.1 0.1 0.1 3.3 v pci per pci specifications 3.3 v pci-x per pci-x specifications notes: 1. currents are measured at 85c junction temperature. 2. the minimum drive strength for any lvcmos 1.2 v or lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strength displayed in the software is supported for normal range only. for a detailed i/v curve, refer to the ibis models. 3. all lvmcos 3.3 v software macros support lvcmos 3.3 v wide range as specified in the jesd-8b specification. 4. applicable to v2 devices operating at vcci ? vcc. 5. all lvcmos 1.2 v software macros s upport lvcmos 1.2 v wide range as specified in the jesd8-12 specification.
igloo dc and switching characteristics 2-26 revision 23 table 2-27 ? summary of maximum and minimum dc input and output levels applicable to commercial and industrial conditions?s oftware default settings applicable to standard i/o banks i/o standard drive strength equivalent software default drive strength option 2 slew rate vil v ih vol v oh i ol 1 i oh 1 min. v max. v min. v max. v max. v min. vmama 3.3 v lvttl / 3.3 v lvcmos 8 ma 8 ma high ?0.3 0.8 2 3.6 0.4 2.4 8 8 3.3 v lvcmos wide range 3 100 a 8 ma high ?0.3 0.8 2 3.6 0.2 vdd-0.2 0.1 0.1 2.5 v lvcmos 8 ma 8 ma high ?0.3 0.7 1.7 3.6 0.7 1.7 8 8 1.8 v lvcmos 4 ma 4 ma high ?0.3 0.35 * vcci 0.65 * vcci 3.6 0.45 vcci ? 0.45 4 4 1.5 v lvcmos 2 ma 2 ma high ?0.3 0.35 * vcci 0.65 * vcci 3.6 0.25 * vcci 0.75 * vcci 2 2 1.2 v lvcmos 4 1 ma 1 ma high ?0.3 0.35 * vcci 0.65 * vcci 3.6 0.25 * vcci 0.75 * vcci 1 1 1.2 v lvcmos wide range 4,5 100 a 1 ma high ?0.3 0.3 * vcci 0.7 * vcci 3.6 0.1 vcci ? 0.1 0.1 0.1 notes: 1. currents are measured at 85c junction temperature. 2. the minimum drive strength for any lvcmos 1.2 v or lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strength displayed in the software is supported for normal range only. for a detailed i/v curve, refer to the ibis models. 3. all lvmcos 3.3 v software macros s upport lvcmos 3.3 v wide range as specified in the jesd-8b specification. 4. applicable to v2 devices operating at vcci ? vcc. 5. all lvcmos 1.2 v software macros s upport lvcmos 1.2 v wide range as specified in the jesd8-12 specification.
igloo low power flash fpgas revision 23 2-27 table 2-28 ? summary of maximum and minimum dc input levels applicable to commercial and industrial conditions dc i/o standards commercial 1 industrial 2 iil 4 iih 5 iil 4 iih 5 a a a a 3.3 v lvttl / 3.3 v lvcmos 10 10 15 15 3.3 v lvcmos wide range 10 10 15 15 2.5 v lvcmos 10 10 15 15 1.8 v lvcmos 10 10 15 15 1.5 v lvcmos 10 10 15 15 1.2 v lvcmos 3 10 10 15 15 1.2 v lvcmos wide range 3 10 10 15 15 3.3 v pci 10 10 15 15 3.3 v pci-x 10 10 15 15 notes: 1. commercial range (0c < t a < 70c) 2. industrial range (?40c < t a < 85c) 3. applicable to v2 devices operating at vcci ?? vcc. 4. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 5. iih is the input leakage current per i/o pin over reco mmended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges
igloo dc and switching characteristics 2-28 revision 23 summary of i/o timing characteristi cs ? default i/o software settings table 2-29 ? summary of ac measuring points standard measuring trip point (vtrip) 3.3 v lvttl / 3.3 v lvcmos 1.4 v 3.3 v vcmos wide range 1.4 v 2.5 v lvcmos 1.2 v 1.8 v lvcmos 0.90 v 1.5 v lvcmos 0.75 v 1.2 v lvcmos 0.60 v 1.2 v lvcmos wide range 0.60 v 3.3 v pci 0.285 * vcci (rr) 0.615 * vcci (ff) 3.3 v pci-x 0.285 * vcci (rr) 0.615 * vcci (ff) table 2-30 ? i/o ac parameter definitions parameter parameter definition t dp data to pad delay through the output buffer t py pad to data delay through the input buffer t dout data to output buffer delay through the i/o interface t eout enable to output buffer tristate control delay through the i/o interface t din input buffer to data delay through the i/o interface t hz enable to pad delay through the output buffer?high to z t zh enable to pad delay through the output buffer?z to high t lz enable to pad delay through the output buffer?low to z t zl enable to pad delay through the output buffer?z to low t zhs enable to pad delay through the output buffer with delayed enable?z to high t zls enable to pad delay through the output buffer with delayed enable?z to low
igloo low power flash fpgas revision 23 2-29 table 2-31 ? summary of i/o timing characteristics?softw are default settings, std. speed grade, commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci (per standard) applicable to advanced i/o banks i/o standard drive strength equivalent soft ware default drive strength option 1 (ma) slew rate capacitive load (pf) external resistor ( ? ) t dout (ns) t dp (ns) t din (ns) t py (ns) t eout (ns) t zl (ns) t zh (ns) t lz (ns) t hz (ns) t zls (ns) t zhs (ns) units 3.3 v lvttl / 3.3 v lvcmos 12 ma 12 high 5 ? 0.97 2.09 0.18 0.85 0.66 2.14 1.68 2.67 3.05 5.73 5.27 ns 3.3 v lvcmos wide range 2 100 a 12 high 5 ? 0.97 2.93 0.18 1. 19 0.66 2.95 2.27 3.81 4.30 6.54 5.87 ns 2.5 v lvcmos 12 ma 12 high 5 ? 0.97 2.09 0. 18 1.08 0.66 2.14 1.83 2.73 2.93 5.73 5.43 ns 1.8 v lvcmos 12 ma 12 high 5 ? 0.97 2.24 0.18 1. 01 0.66 2.29 2.00 3.02 3.40 5.88 5.60 ns 1.5 v lvcmos 12 ma 12 high 5 ? 0.97 2.50 0.18 1. 17 0.66 2.56 2.27 3.21 3.48 6.15 5.86 ns 3.3 v pci per pci spec ? high 10 25 2 0.97 2.32 0.18 0.74 0.66 2.37 1.78 2.67 3.05 5.96 5.38 ns 3.3 v pci-x per pci-x spec ? high 10 25 2 0.97 2.32 0.19 0.70 0.66 2.37 1.78 2.67 3.05 5.96 5.38 ns lvds 24 ma ? high ? ? 0.97 1.74 0.19 1.35 ? ? ? ? ? ? ? ns lvpecl 24 ma ? high ? ? 0.97 1.68 0.19 1.16 ? ? ? ? ? ? ? ns notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wi de range is 100 a. drive strength displayed in the software is supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. all lvcmos 3.3 v software macros s upport lvcmos 3.3 v wide range as specified in the jesd-8b specification. 3. resistance is used to measure i/o propagation delays as defined in pci specifications. see figure 2-12 on page 2-78 for connectivity. this resistor is not required during normal operation. 4. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo dc and switching characteristics 2-30 revision 23 table 2-32 ? summary of i/o timing characteristics?softw are default settings, std. speed grade, commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci (per standard) applicable to standard plus i/o banks i/o standard drive strength equivalent soft ware default drive strength option 1 (ma ) slew rate capacitive load (pf) external resistor ( ? ) t dout (ns) t dp (ns) t din (ns) t py (ns) t eout (ns) t zl (ns) t zh (ns) t lz (ns) t hz (ns) t zls (ns) t zhs (ns) units 3.3 v lvttl / 3.3 v lvcmos 12 ma 12 high 5 ? 0.97 1.75 0.18 0.85 0.66 1.79 1.40 2.36 2.79 5.38 4.99 ns 3.3 v lvcmos wide range 2 100 a 12 high 5 ? 0.97 2.45 0.18 1. 20 0.66 2.47 1.92 3.33 3.90 6.06 5.51 ns 2.5 v lvcmos 12 ma 12 high 5 ? 0.97 1.75 0.18 1.08 0.66 1.79 1.52 2.38 2.70 5.39 5.11 ns 1.8 v lvcmos 8 ma 8 high 5 ? 0.97 1.97 0.18 1.01 0.66 2.02 1.76 2.46 2.66 5.61 5.36 ns 1.5 v lvcmos 4 ma 4 high 5 ? 0.97 2.25 0.18 1.18 0.66 2.30 2.00 2.53 2.68 5.89 5.59 ns 3.3 v pci per pci spec ? high 10 25 2 0.97 1.97 0.18 0.73 0.66 2.01 1.50 2.36 2.79 5.61 5.10 ns 3.3 v pci-x per pci- x spec ? high 10 25 2 0.97 1.97 0.19 0.70 0.66 2.01 1.50 2.36 2.79 5.61 5.10 ns notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wi de range is 100 a. drive strength displayed in the software is supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. all lvcmos 3.3 v software macros s upport lvcmos 3.3 v wide range as specified in the jesd-8b specification. 3. resistance is used to measure i/o propagation delays as defined in pci specifications. see figure 2-12 on page 2-78 for connectivity. this resistor is not required during normal operation. 4. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-31 table 2-33 ? summary of i/o timing characteristics?softw are default settings, std. speed grade, commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci (per standard) applicable to standard i/o banks i/o standard drive strength) equivalent soft ware default drive strength option 1 (ma) slew rate capacitive load (pf) external resistor ( ? ) t dout (ns) t dp (ns) t din (ns) t py (ns) t eout (ns) t zl (ns) t zh (ns) t lz (ns) t hz (ns) units 3.3 v lvttl / 3.3 v lvcmos 8 ma 8 high 5 ? 0.97 1.85 0.18 0.83 0.66 1.89 1.46 1.96 2.26 ns 3.3 v lvcmos wide range 2 100 a 8 high 5 ? 0.97 2.62 0. 18 1.17 0.66 2.63 2.02 2.79 3.17 ns 2.5 v lvcmos 8 ma 8 high 5 ? 0.97 1.88 0.18 1.04 0.66 1.92 1.63 1.95 2.15 ns 1.8 v lvcmos 4 ma 4 high 5 ? 0.97 2.18 0.18 0.98 0.66 2.22 1.93 1.97 2.06 ns 1.5 v lvcmos 2 ma 2 high 5 ? 0.97 2.51 0.18 1.14 0.66 2.56 2.21 1.99 2.03 ns notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strength displayed in the software is supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. all lvcmos 3.3 v software macros s upport lvcmos 3.3 v wide range as specified in the jesd-8b specification. 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo dc and switching characteristics 2-32 revision 23 table 2-34 ? summary of i/o timing characteristics?softw are default settings, std. speed grade, commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci (per standard) applicable to advanced i/o banks i/o standard drive strength equivalent soft ware default drive strength option 1 slew rate capacitive load (pf) external resistor ( ? ) t dout (ns) t dp (ns) t din (ns) t py (ns) t eout (ns) t zl (ns) t zh (ns) t lz (ns) t hz (ns) t zls (ns) t zhs (ns) units 3.3 v lvttl / 3.3 v lvcmos 12 ma 12 ma high 5 ? 1.55 2.67 0.26 0.98 1.10 2.71 2.18 3.25 3.93 8.50 7.97 ns 3.3 v lvcmos wide range 2 100 a 12 ma high 5 ? 1.55 3.73 0.26 1.32 1.10 3.73 2.91 4.51 5.43 9.52 8.69 ns 2.5 v lvcmos 12 ma 12 ma high 5 ? 1.55 2.64 0. 26 1.20 1.10 2.67 2.29 3.30 3.79 8.46 8.08 ns 1.8 v lvcmos 12 ma 12 ma high 5 ? 1.55 2.72 0.26 1.11 1.10 2.76 2.43 3. 58 4.19 8.55 8.22 ns 1.5 v lvcmos 12 ma 12 ma high 5 ? 1.55 2.96 0.26 1. 27 1.10 3.00 2.70 3.75 4.23 8.78 8.48 ns 1.2 v lvcmos 2 ma 2 ma high 5 ? 1.55 3.60 0.26 1.60 1.10 3.47 3.36 3.93 3.65 9.26 9.14 ns 1.2 v lvcmos wide range 3 100 a 2 ma high 5 ? 1.55 3.60 0.26 1. 60 1.10 3.47 3.36 3.93 3.65 9.26 9.14 ns 3.3 v pci per pci spec ? high 10 25 2 1.55 2.91 0.26 0.86 1.10 2.95 2.29 3.25 3.93 8.74 8.08 ns 3.3 v pci-x per pci-x spec ? high 10 25 2 1.55 2.91 0.25 0.86 1.10 2.95 2.29 3.25 3.93 8.74 8.08 ns lvds 24 ma ? high ? ? 1.55 2.27 0.25 1.57 ? ? ? ? ? ? ? ns lvpecl 24 ma ? high ? ? 1.55 2.24 0.25 1.38 ? ? ? ? ? ? ? ns notes: 1. the minimum drive strength for any lvcmos 1.2 v or lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strength displayed in the software is supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. all lvcmos 3.3 v software macros s upport lvcmos 3.3 v wide range as specified in the jesd-8b specification. 3. all lvcmos 1.2 v software macros s upport lvcmos 1.2 v wide range as specified in the jesd8-12 specification 4. resistance is used to measure i/o propagation delays as defined in pci specifications. see figure 2-12 on page 2-78 for connectivity. this resistor is not required during normal operation. 5. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-33 table 2-35 ? summary of i/o timing characteristics?softw are default settings, std. speed grade, commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci (per standard) applicable to standard plus i/o banks i/o standard drive strength equivalent software default drive strength option 1 (ma) slew rate capacitive load (pf) external resistor ( ? ) t dout (ns) t dp (ns) t din (ns) t py (ns) t eout (ns) t zl (ns) t zh (ns) t lz (ns) t hz (ns) t zls (ns) t zhs (ns) units 3.3 v lvttl / 3.3 v lvcmos 12 ma 12 high 5 ? 1.55 2.31 0.26 0.97 1.10 2.34 1.86 2.93 3.64 8.12 7.65 ns 3.3 v lvcmos wide range 2 100 a 12 high 5 ? 1.55 3.20 0.26 1.32 1.10 3.20 2.52 4.01 4.97 8.99 8.31 ns 2.5 v lvcmos 12 ma 12 high 5 ? 1.55 2.29 0.26 1.19 1.10 2.32 1.94 2.94 3.52 8.10 7.73 ns 1.8 v lvcmos 8 ma 8 high 5 ? 1.55 2.43 0.26 1.11 1.10 2.47 2.16 2.99 3.39 8.25 7.94 ns 1.5 v lvcmos 4 ma 4 high 5 ? 1.55 2.68 0.26 1.27 1.10 2.72 2.39 3.07 3.37 8.50 8.18 ns 1.2 v lvcmos 2 ma 2 high 5 ? 1.55 3.22 0.26 1.59 1.10 3.11 2.78 3.29 3.48 8.90 8.57 ns 1.2 v lvcmos wide range 3 100 a 2 high 5 ? 1.55 3.22 0.26 1. 59 1.10 3.11 2.78 3.29 3.48 8.90 8.57 ns 3.3 v pci per pci spec ? high 10 25 2 1.55 2.53 0.26 0.84 1.10 2.57 1.98 2.93 3.64 8.35 7.76 ns 3.3 v pci-x per pci-x spec ? high 10 25 2 1.55 2.53 0.25 0.85 1.10 2.57 1.98 2.93 3.64 8.35 7.76 ns notes: 1. the minimum drive strength for any lvcmos 1.2 v or lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strength displayed in the software is supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. all lvcmos 3.3 v software macros support lvcmos 3.3 v wide range as specified in the jesd-8b specification. 3. all lvcmos 1.2 v software macros support lvcmos 1.2 v wide range as specified in the jesd8-12 specification 4. resistance is used to measure i/o propagation delays as defined in pci specifications. see figure 2-12 on page 2-78 for connectivity. this resistor is not required during normal operation. 5. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo dc and switching characteristics 2-34 revision 23 table 2-36 ? summary of i/o timing characteristics?softw are default settings, std. speed grade, commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case vcci (per standard) applicable to standard i/o banks i/o standard drive strength equivalent software default drive strength option 1 (ma) slew rate capacitive load (pf) external resistor ( ? ) t dout (ns) t dp (ns) t din (ns) t py (ns) t eout (ns) t zl (ns) t zh (ns) t lz (ns) t hz (ns) units 3.3 v lvttl / 3.3 v lvcmos 8 ma 8 high 5 ? 1.55 2.38 0.26 0.94 1.10 2.41 1.92 2.40 2.96 ns 3.3 v lvcmos wide range 3 100 a 8 high 5 ? 1.55 3.33 0. 26 1.29 1.10 3.33 2.62 3.34 4.07 ns 2.5 v lvcmos 8 ma 8 high 5 ? 1.55 2.39 0.26 1.15 1.10 2.42 2.05 2.38 2.80 ns 1.8 v lvcmos 4 ma 4 high 5 ? 1.55 2.60 0. 26 1.08 1.10 2.64 2.33 2.38 2.62 ns 1.5 v lvcmos 2 ma 2 high 5 ? 1.55 2.92 0. 26 1.22 1.10 2.96 2.60 2.40 2.56 ns 1.2 v lvcmos 1 ma 1 high 5 ? 1.55 3.59 0.26 1.53 1.10 3.47 3.06 2.51 2.49 ns 1.2 v lvcmos wide range 3 100 a 1 high 5 ? 1.55 3.59 0.26 1.53 1.10 3.47 3.06 2.51 2.49 ns notes: 1. the minimum drive strength for any lvcmos 1.2 v or lvcm os 3.3 v software configuration when run in wide range is 100 a. drive strength displayed in the software is supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. all lvcmos 3.3 v software macros support lvcmos 3.3 v wide range as specified in the jesd-8b specification. 3. all lvcmos 1.2 v software macros support lvcmos 1.2 v wide range as specified in the jesd8-12 specification 4. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-35 detailed i/o dc characteristics table 2-37 ? input capacitance symbol definition conditions min. max. units c in input capacitance vin = 0, f = 1.0 mhz 8 pf c inclk input capacitance on the clock pin vin = 0, f = 1.0 mhz 8 pf table 2-38 ? i/o output buffer maximum resistances 1 applicable to advanced i/o banks standard drive strength r pull-down ( ? ) 2 r pull-up ( ? ) 3 3.3 v lvttl / 3.3 v lvcmos 2 ma 100 300 4 ma 100 300 6 ma 50 150 8 ma 50 150 12 ma 25 75 16 ma 17 50 24 ma 11 33 3.3 v lvcmos wide range 100 ? a same as regular 3.3 v lvcmos same as regular 3.3 v lvcmos 2.5 v lvcmos 2 ma 100 200 4 ma 100 200 6 ma 50 100 8 ma 50 100 12 ma 25 50 16 ma 20 40 1.5 v lvcmos 2 ma 200 224 4 ma 100 112 6 ma 67 75 8 ma 33 37 12 ma 33 37 1.2 v lvcmos 4 2 ma 158 164 1.2 v lvcmos wide range 4 100 ? a same as regular 1.2 v lvcmos same as regular 1.2 v lvcmos 3.3 v pci/pci-x per pci/pci-x specification 25 75 notes: 1. these maximum values are provided for informational reasons only. minimum output buffer resistance values depend on vcci, drive strength selection, temperature, and process. for board design considerations and detailed output buffer resistances, use the corresponding ibis models located at http://www.microsemi.com/soc/download/ibis/default.aspx . 2. r (pull-down-max) = (volspec) / i olspec 3. r (pull-up-max) = (vccimax ? vohspec) / i ohspec 4. applicable to igloo v2 devices operating at vcci ? vcc
igloo dc and switching characteristics 2-36 revision 23 table 2-39 ? i/o output buffer maximum resistances 1 applicable to standard plus i/o banks standard drive strength r pull-down ( ? ) 2 r pull-up ( ? ) 3 3.3 v lvttl / 3.3 v lvcmos 2 ma 100 300 4 ma 100 300 6 ma 50 150 8 ma 50 150 12 ma 25 75 16 ma 25 75 3.3 v lvcmos wide range 100 ? a same as regular 3.3 v lvcmos same as regular 3.3 v lvcmos 2.5 v lvcmos 2 ma 100 200 4 ma 100 200 6 ma 50 100 8 ma 50 100 12 ma 25 50 1.8 v lvcmos 2 ma 200 225 4 ma 100 112 6 ma 50 56 8 ma 50 56 1.5 v lvcmos 2 ma 200 224 4 ma 100 112 1.2 v lvcmos 4 2 ma 158 164 1.2 v lvcmos wide range 4 100 ? a same as regular 1.2 v lvcmos same as regular 1.2 v lvcmos 3.3 v pci/pci-x per pci/pci-x specification 25 75 notes: 1. these maximum values are provided for informational reasons only. minimum output buffer resistance values depend on vcci, drive strength selection, temperature, and process. for board design considerations and detailed output buffer resistances, use the corresponding ibis models located at http://www.microsemi.com/soc/download/ibis/default.aspx . 2. r (pull-down-max) = (volspec) / i olspec 3. r (pull-up-max) = (vccimax ? vohspec) / i ohspec 4. applicable to igloo v2 devices operating at vcci ?? vcc
igloo low power flash fpgas revision 23 2-37 table 2-40 ? i/o output buffer maximum resistances 1 applicable to standard i/o banks standard drive strength r pull-down ( ? ) 2 r pull-up ( ? ) 3 3.3 v lvttl / 3.3 v lvcmos 2 ma 100 300 4 ma 100 300 6 ma 50 150 8 ma 50 150 3.3 v lvcmos wide range 100 ? a same as regular 3.3 v lvcmos same as regular 3.3 v lvcmos 2.5 v lvcmos 2 ma 100 200 4 ma 100 200 6 ma 50 100 8 ma 50 100 1.8 v lvcmos 2 ma 200 225 4 ma 100 112 1.5 v lvcmos 2 ma 200 224 1.2 v lvcmos 1 ma 158 164 1.2 v lvcmos wide range 4 100 ? a same as regular 1.2 v lvcmos same as regular 1.2 v lvcmos notes: 1. these maximum values are provided for informational reasons only. minimum output buffer resistance values depend on vcci, drive strength selection, temperature, and process. for board design considerations and detailed output buffer resistances, use the corresponding ibis models located at http://www.microsemi.com/soc/download/ibis/default.aspx . 2. r (pull-down-max) = (volspec) / i olspec 3. r (pull-up-max) = (vccimax ? vohspec) / i ohspec table 2-41 ? i/o weak pull-up/pull-down resistances minimum and maximum weak pull-u p/pull-down resistance values vcci r (weak pull-up) 1 ( ? ) r (weak pull-down) 2 ( ? ) min. max. min. max. 3.3 v 10 k 45 k 10 k 45 k 3.3 v wide range i/os 10 k 45 k 10 k 45 k 2.5 v 11 k 55 k 12 k 74 k 1.8 v 18 k 70 k 17 k 110 k 1.5 v 19 k 90 k 19 k 140 k 1.2 v 25 k 110 k 25 k 150 k 1.2 v wide range i/os 19 k 110 k 19 k 150 k notes: 1. r (weak pull-up-max) = (vccimax ? vohspec) / i (weak pull-up-min) 2. r (weak pulldown-max) = (volspec) / i (weak pulldown-min)
igloo dc and switching characteristics 2-38 revision 23 table 2-42 ? i/o short currents iosh/iosl applicable to advanced i/o banks drive strength iosl (ma)* iosh (ma)* 3.3 v lvttl / 3.3 v lvcmos 2 ma 25 27 4 ma 25 27 6 ma 51 54 8 ma 51 54 12 ma 103 109 16 ma 132 127 24 ma 268 181 3.3 v lvcmos wide range 100 ? a same as regular 3.3 v lvcmos same as regular 3.3 v lvcmos 2.5 v lvcmos 2 ma 16 18 4 ma 16 18 6 ma 32 37 8 ma 32 37 12 ma 65 74 16 ma 83 87 24 ma 169 124 1.8 v lvcmos 2 ma 9 11 4 ma 17 22 6 ma 35 44 8 ma 45 51 12 ma 91 74 16 ma 91 74 1.5 v lvcmos 2 ma 13 16 4 ma 25 33 6 ma 32 39 8 ma 66 55 12 ma 66 55 1.2 v lvcmos 2 ma 20 26 1.2 v lvcmos wide range 100 ? a20 26 3.3 v pci/pci-x per pci/pci-x specification 103 109 note: *t j = 100c
igloo low power flash fpgas revision 23 2-39 table 2-43 ? i/o short currents iosh/iosl applicable to standard plus i/o banks drive strength iosl (ma)* iosh (ma)* 3.3 v lvttl / 3.3 v lvcmos 2 ma 25 27 4 ma 25 27 6 ma 51 54 8 ma 51 54 12 ma 103 109 16 ma 103 109 3.3 v lvcmos wide range 100 ? a same as regular 3.3 v lvcmos same as regular 3.3 v lvcmos 2.5 v lvcmos 2 ma 16 18 4 ma 16 18 6 ma 32 37 8 ma 32 37 12 ma 65 74 1.8 v lvcmos 2 ma 9 11 4 ma 17 22 6 ma 35 44 8 ma 35 44 1.5 v lvcmos 2 ma 13 16 4 ma 25 33 1.2 v lvcmos 2 ma 20 26 1.2 v lvcmos wide range 100 ? a20 26 3.3 v pci/pci-x per pci/pci-x specification 103 109 note: *t j = 100c
igloo dc and switching characteristics 2-40 revision 23 the length of time an i/o can withstand i osh /i osl events depends on the junction temperature. the reliability data below is based on a 3.3 v, 12 ma i/o setting, which is the worst case for this type of analysis. for example, at 100c, the short current condition would have to be sustained for more than six months to cause a reliability concern. the i/o design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions. table 2-44 ? i/o short currents iosh/iosl applicable to standard i/o banks drive strength iosl (ma)* iosh (ma)* 3.3 v lvttl / 3.3 v lvcmos 2 ma 25 27 4 ma 25 27 6 ma 51 54 8 ma 51 54 3.3 v lvcmos wide range 100 ? a same as regular 3.3 v lvcmos same as regular 3.3 v lvcmos 2.5 v lvcmos 2 ma 16 18 4 ma 16 18 6 ma 32 37 8 ma 32 37 1.8 v lvcmos 2 ma 9 11 4 ma 17 22 1.5 v lvcmos 2 ma 13 16 1.2 v lvcmos 1 ma 20 26 1.2 v lvcmos wide range 100 ? a20 26 note: *t j = 100c table 2-45 ? duration of short circui t event before failure temperature time before failure ?40c > 20 years ?20c > 20 years 0c > 20 years 25c > 20 years 70c 5 years 85c 2 years 100c 6 months table 2-46 ? i/o input rise time, fall time , and related i/o reliability1 input buffer input rise/fall time (min.) input rise/fall time (max.) reliability lvttl/lvcmos no requirement 10 ns * 20 years (100c) lvds/b-lvds/m-lvds/ lvpecl no requirement 10 ns * 10 years (100c) note: the maximum input rise/fall time is related to the noise induced into the input buffer trace. if the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. the longer the rise/fall times, the more susceptible the input signal is to the board noise. microsemi recommends signal integrit y evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.
igloo low power flash fpgas revision 23 2-41 single-ended i/o characteristics 3.3 v lvttl / 3.3 v lvcmos low-voltage transistor?transistor logic (lvttl) is a general-purpose standard (eia/jesd) for 3.3 v applications. it uses an lvttl input buffer and push- pull output buffer. furthermore, all lvcmos 3.3 v software macros comply with lvcmos 3.3 v wide range as specified in the jesd8a specification. table 2-47 ? minimum and maximum dc input and output levels applicable to advanced i/o banks 3.3 v lvttl / 3.3 v lvcmos vil vih vol voh iol ioh iosl iosh iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.8 2 3.6 0.4 2.4 2 2 25 27 10 10 4 ma ?0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 10 10 6 ma ?0.3 0.8 2 3.6 0.4 2.4 6 6 51 54 10 10 8 ma ?0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 10 10 12 ma ?0.3 0.8 2 3.6 0.4 2.4 12 12 103 109 10 10 16 ma ?0.3 0.8 2 3.6 0.4 2.4 16 16 132 127 10 10 24 ma ?0.3 0.8 2 3.6 0.4 2.4 24 24 268 181 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges. 3. currents are measured at 100c junction temperature and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray. table 2-48 ? minimum and maximum dc input and output levels applicable to standard plus i/o banks 3.3 v lvttl / 3.3 v lvcmos vil vih v ol voh iol ioh iosl iosh iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.8 2 3.6 0.4 2.4 2 2 25 27 10 10 4 ma ?0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 10 10 6 ma ?0.3 0.8 2 3.6 0.4 2.4 6 6 51 54 10 10 8 ma ?0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 10 10 12 ma ?0.3 0.8 2 3.6 0.4 2.4 12 12 103 109 10 10 16 ma ?0.3 0.8 2 3.6 0.4 2.4 16 16 103 109 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 3. currents are measured at 100c junction temperature and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray.
igloo dc and switching characteristics 2-42 revision 23 table 2-49 ? minimum and maximum dc input and output levels applicable to standard i/o banks 3.3 v lvttl / 3.3 v lvcmos vil vih v ol voh iol ioh iosl iosh iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.8 2 3.6 0.4 2.4 2 2 25 27 10 10 4 ma ?0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 10 10 6 ma ?0.3 0.8 2 3.6 0.4 2.4 6 6 51 54 10 10 8 ma ?0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 3. currents are measured at 100c junction temperature and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray. figure 2-7 ? ac loading table 2-50 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) c load (pf) 03.31.45 note: *measuring point = vtrip. see table 2-29 on page 2-28 for a complete table of trip points. test point test point enable path datapath 5 pf r = 1 k r to vcci for t lz / t zl / t zls r to gnd for t hz / t zh / t zhs 5 pf for t zh / t zhs / t zl / t zls 5 pf for t hz / t lz
igloo low power flash fpgas revision 23 2-43 timing characteristics applies to 1.5 v dc core voltage table 2-51 ? 3.3 v lvttl / 3.3 v lvcmos low slew ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 0.97 4.47 0.18 0.85 0.66 4.56 3.89 2.24 2.19 8.15 7.48 ns 6 ma std. 0.97 3.74 0.18 0.85 0.66 3.82 3.37 2.49 2.63 7.42 6.96 ns 8 ma std. 0.97 3.74 0.18 0.85 0.66 3.82 3.37 2.49 2.63 7.42 6.96 ns 12 ma std. 0.97 3.23 0.18 0.85 0.66 3.30 2.98 2.66 2.91 6.89 6.57 ns 16 ma std. 0.97 3.08 0.18 0.85 0.66 3.14 2.89 2.70 2.99 6.74 6.48 ns 24 ma std. 0.97 3.00 0.18 0.85 0.66 3.06 2.91 2.74 3.27 6.66 6.50 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-52 ? 3.3 v lvttl / 3.3 v lvcmos high slew ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 0.97 2.73 0.18 0.85 0.66 2.79 2.22 2.25 2.32 6.38 5.82 ns 6 ma std. 0.97 2.32 0.18 0.85 0.66 2.37 1.85 2.50 2.76 5.96 5.45 ns 8 ma std. 0.97 2.32 0.18 0.85 0.66 2.37 1.85 2.50 2.76 5.96 5.45 ns 12 ma std. 0.97 2.09 0.18 0.85 0.66 2.14 1.68 2.67 3.05 5.73 5.27 ns 16 ma std. 0.97 2.05 0.18 0.85 0.66 2.10 1.64 2.70 3.12 5.69 5.24 ns 24 ma std. 0.97 2.07 0.18 0.85 0.66 2.12 1.60 2.75 3.41 5.71 5.20 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-53 ? 3.3 v lvttl / 3.3 v lvcmos low slew ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v applicable to standard plus banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 0.97 3.94 0.18 0.85 0.66 4.02 3.46 1.98 2.03 7.62 7.05 ns 6 ma std. 0.97 3.24 0.18 0.85 0.66 3.31 2.99 2.21 2.42 6.90 6.59 ns 8 ma std. 0.97 3.24 0.18 0.85 0.66 3.31 2.99 2.21 2.42 6.90 6.59 ns 12 ma std. 0.97 2.76 0.18 0.85 0.66 2.82 2.63 2.36 2.68 6.42 6.22 ns 16 ma std. 0.97 2.76 0.18 0.85 0.66 2.82 2.63 2.36 2.68 6.42 6.22 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo dc and switching characteristics 2-44 revision 23 table 2-54 ? 3.3 v lvttl / 3.3 v lvcmos high slew ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v applicable to standard plus banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 0.97 2.32 0.18 0.85 0.66 2.37 1.90 1.98 2.13 5.96 5.49 ns 6 ma std. 0.97 1.94 0.18 0.85 0.66 1.99 1.57 2.20 2.53 5.58 5.16 ns 8 ma std. 0.97 1.94 0.18 0.85 0.66 1.99 1.57 2.20 2.53 5.58 5.16 ns 12 ma std. 0.97 1.75 0.18 0.85 0.66 1.79 1.40 2.36 2.79 5.38 4.99 ns 16 ma std. 0.97 1.75 0.18 0.85 0.66 1.79 1.40 2.36 2.79 5.38 4.99 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-55 ? 3.3 v lvttl / 3.3 v lvcmos low slew ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 2 ma std. 0.97 3.80 0.18 0.83 0.66 3.88 3.41 1.74 1.78 ns 4 ma std. 0.97 3.80 0.18 0.83 0.66 3.88 3.41 1.74 1.78 ns 6 ma std. 0.97 3.15 0.18 0.83 0.66 3.21 2.94 1.96 2.17 ns 8 ma std. 0.97 3.15 0.18 0.83 0.66 3.21 2.94 1.96 2.17 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-56 ? 3.3 v lvttl / 3.3 v lvcmos high slew ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 2 ma std. 0.97 2.19 0.18 0.83 0.66 2.24 1.79 1.74 1.87 ns 4 ma std. 0.97 2.19 0.18 0.83 0.66 2.24 1.79 1.74 1.87 ns 6 ma std. 0.97 1.85 0.18 0.83 0.66 1.89 1.46 1.96 2.26 ns 8 ma std. 0.97 1.85 0.18 0.83 0.66 1.89 1.46 1.96 2.26 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-45 applies to 1.2 v dc core voltage table 2-57 ? 3.3 v lvttl / 3.3 v lvcmos low slew ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 3.0 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 1.55 5.12 0.26 0.98 1.10 5.20 4.46 2.81 3.02 10.99 10.25 ns 6 ma std. 1.55 4.38 0.26 0.98 1.10 4.45 3.93 3.07 3.48 10.23 9.72 ns 8 ma std. 1.55 4.38 0.26 0.98 1.10 4.45 3.93 3.07 3.48 10.23 9.72 ns 12 ma std. 1.55 3.85 0.26 0.98 1.10 3.91 3.53 3.24 3.77 9.69 9.32 ns 16 ma std. 1.55 3.69 0.26 0.98 1.10 3.75 3.44 3.28 3.84 9.54 9.23 ns 24 ma std. 1.55 3.61 0.26 0.98 1.10 3.67 3.46 3.33 4.13 9.45 9.24 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-58 ? 3.3 v lvttl / 3.3 v lvcmos high slew ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 3.0 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 1.55 3.33 0.26 0.98 1.10 3.38 2.75 2.82 3.18 9.17 8.54 ns 6 ma std. 1.55 2.91 0.26 0.98 1.10 2.95 2.37 3.07 3.64 8.73 8.15 ns 8 ma std. 1.55 2.91 0.26 0.98 1.10 2.95 2.37 3.07 3.64 8.73 8.15 ns 12 ma std. 1.55 2.67 0.26 0.98 1.10 2.71 2.18 3.25 3.93 8.50 7.97 ns 16 ma std. 1.55 2.63 0.26 0.98 1.10 2.67 2.14 3.28 4.01 8.45 7.93 ns 24 ma std. 1.55 2.65 0.26 0.98 1.10 2.69 2.10 3.33 4.31 8.47 7.89 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-59 ? 3.3 v lvttl / 3.3 v lvcmos low slew ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 3.0 v applicable to standard plus banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 1.55 4.56 0.26 0.97 1.10 4.63 3.98 2.54 2.83 10.42 9.76 ns 6 ma std. 1.55 3.84 0.26 0.97 1.10 3.90 3.50 2.77 3.24 9.69 9.29 ns 8 ma std. 1.55 3.84 0.26 0.97 1.10 3.90 3.50 2.77 3.24 9.69 9.29 ns 12 ma std. 1.55 3.35 0.26 0.97 1.10 3.40 3.13 2.93 3.51 9.19 8.91 ns 16 ma std. 1.55 3.35 0.26 0.97 1.10 3.40 3.13 2.93 3.51 9.19 8.91 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values.
igloo dc and switching characteristics 2-46 revision 23 table 2-60 ? 3.3 v lvttl / 3.3 v lvcmos high slew ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 3.0 v applicable to standard plus banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 1.55 2.89 0.26 0.97 1.10 2.93 2.38 2.53 2.96 8.72 8.17 ns 6 ma std. 1.55 2.50 0.26 0.97 1.10 2.54 2.04 2.77 3.37 8.33 7.82 ns 8 ma std. 1.55 2.50 0.26 0.97 1.10 2.54 2.04 2.77 3.37 8.33 7.82 ns 12 ma std. 1.55 2.31 0.26 0.97 1.10 2.34 1.86 2.93 3.64 8.12 7.65 ns 16 ma std. 1.55 2.31 0.26 0.97 1.10 2.34 1.86 2.93 3.64 8.12 7.65 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-61 ? 3.3 v lvttl / 3.3 v lvcmos low slew ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 3.0 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 2 ma std. 1.55 4.39 0.26 0.94 1.10 4.46 3.91 2.17 2.44 ns 4 ma std. 1.55 4.39 0.26 0.94 1.10 4.46 3.91 2.17 2.44 ns 6 ma std. 1.55 3.72 0.26 0.94 1.10 3.78 3.43 2.40 2.85 ns 8 ma std. 1.55 3.72 0.26 0.94 1.10 3.78 3.43 2.40 2.85 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-62 ? 3.3 v lvttl / 3.3 v lvcmos high slew ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 3.0 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 2 ma std. 1.55 2.74 0.26 0.94 1.10 2.78 2.26 2.17 2.55 ns 4 ma std. 1.55 2.74 0.26 0.94 1.10 2.78 2.26 2.17 2.55 ns 6 ma std. 1.55 2.38 0.26 0.94 1.10 2.41 1.92 2.40 2.96 ns 8 ma std. 1.55 2.38 0.26 0.94 1.10 2.41 1.92 2.40 2.96 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-47 3.3 v lvcmos wide range table 2-63 ? minimum and maximum dc input and output levels for lvcmos 3.3 v wide range applicable to advanced i/o banks 3.3 v lvcmos wide range vil vih vol voh iol ioh iosl iosh iil 2 iih 3 drive strength equivalent software default drive strength option 1 min. v max. v min. v max. v max. v min. vaa max. ma 4 max. ma 4 a 5 a 5 100 a 2 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 25 27 10 10 100 a 4 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 25 27 10 10 100 a 6 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 51 54 10 10 100 a 8 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 51 54 10 10 100 a 12 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 103 109 10 10 100 a 16 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 132 127 10 10 100 a 24 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 268 181 10 10 notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strengths displayed in software are supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 3. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 4. currents are measured at 100c junction temperature and maximum voltage. 5. currents are measured at 85c junction temperature. 6. software default selection highlighted in gray.
igloo dc and switching characteristics 2-48 revision 23 table 2-64 ? minimum and maximum dc input and output levels for lvcmos 3.3 v wide range applicable to standard plus i/o banks 3.3 v lvcmos wide range vil vih vol voh iol ioh iosl iosh iil 2 iih 3 drive strength equivalent software default drive strength option 1 min. v max. v min. v max. v max. v min. vaa max. ma 4 max. ma 4 a 5 a 5 100 a 2 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 25 27 10 10 100 a 4 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 25 27 10 10 100 a 6 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 51 54 10 10 100 a 8 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 51 54 10 10 100 a 12 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 103 109 10 10 100 a 16 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 103 109 10 10 notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strengths displayed in software are supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 3. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 4. currents are measured at 100c junction temperature and maximum voltage. 5. currents are measured at 85c junction temperature. 6. software default selection highlighted in gray.
igloo low power flash fpgas revision 23 2-49 table 2-65 ? minimum and maximum dc input and output levels for lvcmos 3.3 v wide range applicable to standard i/o banks 3.3 v lvcmos wide range vil vih vol voh iol ioh iosl iosh iil 2 iih 3 drive strength equivalent software default drive strength option 1 min. v max. v min. v max. v max. v min. vaa max. ma 4 max. ma 4 a 5 a 5 100 a 2 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 25 27 10 10 100 a 4 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 25 27 10 10 100 a 6 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 51 54 10 10 100 a 8 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 51 54 10 10 notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strengths displayed in software are supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 3. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 4. currents are measured at 100c junction temperature and maximum voltage. 5. currents are measured at 85c junction temperature. 6. software default selection highlighted in gray. table 2-66 ? 3.3 v lvcmos wide range ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) c load (pf) 03.31.45 note: *measuring point = vtrip. see table 2-29 on page 2-28 for a complete table of trip points.
igloo dc and switching characteristics 2-50 revision 23 timing characteristics applies to 1.5 v dc core voltage table 2-67 ? 3.3 v lvcmos wide range low slew ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.7 v applicable to advanced banks drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 100 a 4 ma std. 0.97 6.61 0.18 1.19 0. 66 6.63 5.63 3.15 2.98 10.22 9.23 ns 100 a 6 ma std. 0.97 5.49 0.18 1.19 0. 66 5.51 4.84 3.54 3. 66 9.10 8.44 ns 100 a 8 ma std. 0.97 5.49 0.18 1.19 0. 66 5.51 4.84 3.54 3. 66 9.10 8.44 ns 100 a 12 ma std. 0.97 4.69 0.18 1.19 0. 66 4.71 4.25 3.80 4. 10 8.31 7.85 ns 100 a 16 ma std. 0.97 4.46 0.18 1.19 0. 66 4.48 4.11 3.86 4. 21 8.07 7.71 ns 100 a 24 ma std. 0.97 4.34 0.18 1.19 0. 66 4.36 4.14 3.93 4. 64 7.95 7.74 ns notes: 1. the minimum drive strength for any lvcmos 3.3 v softwa re configuration when run in wide range is 100 a. drive strengths displayed in software are supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-68 ? 3.3 v lvcmos wide range high slew ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.7 v applicable to advanced banks drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 100 a 4 ma std. 0.97 3.92 0.18 1.19 0. 66 3.94 3.10 3.16 3.17 7.54 6.70 ns 100 a 6 ma std. 0.97 3.28 0.18 1.19 0. 66 3.30 2.54 3.54 3.86 6.90 6.14 ns 100 a 8 ma std. 0.97 3.28 0.18 1.19 0. 66 3.30 2.54 3.54 3.86 6.90 6.14 ns 100 a 12 ma std. 0.97 2.93 0.18 1.19 0.66 2.95 2.27 3.81 4.30 6.54 5.87 ns 100 a 16 ma std. 0.97 2.87 0.18 1.19 0. 66 2.89 2.22 3.86 4.41 6.49 5.82 ns 100 a 24 ma std. 0.97 2.90 0.18 1.19 0. 66 2.92 2.16 3.94 4.86 6.51 5.75 ns notes: 1. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. 2. software default selection highlighted in gray. 3. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strengths displayed in software are supported for normal range only. for a detailed i/v curve, refer to the ibis models.
igloo low power flash fpgas revision 23 2-51 table 2-69 ? 3.3 v lvcmos wide range low slew ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.7 v applicable to standard plus banks drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 100 a 4 ma std. 0.97 5.84 0.18 1.20 0. 66 5.86 5.04 2.74 2.71 9.46 8.64 ns 100 a 6 ma std. 0.97 4.76 0.18 1.20 0. 66 4.78 4.33 3.09 3.33 8.37 7.93 ns 100 a 8 ma std. 0.97 4.76 0.18 1.20 0. 66 4.78 4.33 3.09 3.33 8.37 7.93 ns 100 a 12 ma std. 0.97 4.02 0.18 1.20 0. 66 4.04 3.78 3.33 3.73 7.64 7.37 ns 100 a 16 ma std. 0.97 4.02 0.18 1.20 0. 66 4.04 3.78 3.33 3.73 7.64 7.37 ns notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strengths displayed in software are supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-70 ? 3.3 v lvcmos wide range high slew ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.7 v applicable to standard plus banks drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 100 a 4 ma std. 0.97 3.33 0.18 1.20 0. 66 3.35 2.68 2.73 2. 88 6.94 6.27 ns 100 a 6 ma std. 0.97 2.75 0.18 1.20 0. 66 2.77 2.17 3.08 3. 50 6.36 5.77 ns 100 a 8 ma std. 0.97 2.75 0.18 1.20 0. 66 2.77 2.17 3.08 3. 50 6.36 5.77 ns 100 a 12 ma std. 0.97 2.45 0.18 1.20 0.66 2.47 1.92 3.33 3.90 6.06 5.51 ns 100 a 16 ma std. 0.97 2.45 0.18 1.20 0. 66 2.47 1.92 3.33 3. 90 6.06 5.51 ns notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strengths displayed in software are supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. 3. software default selection highlighted in gray.
igloo dc and switching characteristics 2-52 revision 23 table 2-71 ? 3.3 v lvcmos wide range low slew ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.7 v applicable to standard banks drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 100 a 2 ma std. 0.97 5.64 0.18 1.17 0.66 5.65 4.98 2.45 2.42 ns 100 a 4 ma std. 0.97 5.64 0.18 1.17 0.66 5.65 4.98 2.45 2.42 ns 100 a 6 ma std. 0.97 4.63 0.18 1.17 0.66 4.64 4.26 2.80 3.02 ns 100 a 8 ma std. 0.97 4.63 0.18 1.17 0.66 4.64 4.26 2.80 3.02 ns notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strengths displayed in software are supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-72 ? 3.3 v lvcmos wide range high slew ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.7 v applicable to standard banks drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 100 a 2 ma 0.97 3.16 0.18 1.17 0. 66 3.17 2.53 2.45 2.56 0.97 ns 100 a 4 ma 0.97 3.16 0.18 1.17 0. 66 3.17 2.53 2.45 2.56 0.97 ns 100 a 6 ma 0.97 2.62 0.18 1.17 0. 66 2.63 2.02 2.79 3.17 0.97 ns 100 a 8 ma 0.97 2.62 0.18 1.17 0.66 2.63 2.02 2.79 3.17 0.97 ns notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strengths displayed in software are supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. 3. software default selection highlighted in gray.
igloo low power flash fpgas revision 23 2-53 applies to 1.2 v dc core voltage table 2-73 ? 3.3 v lvcmos wide range low slew ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 2.7 v applicable to advanced banks drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 100 a 4 ma std. 1.55 7.52 0.26 1.32 1.10 7.52 6.38 3.84 4.02 13.31 12.16 ns 100 a 6 ma std. 1.55 6.37 0.26 1.32 1.10 6.37 5.57 4.23 4.73 12.16 11.35 ns 100 a 8 ma std. 1.55 6.37 0.26 1.32 1.10 6.37 5.57 4.23 4.73 12.16 11.35 ns 100 a 12 ma std. 1.55 5.55 0.26 1.32 1.10 5.55 4.96 4.50 5.18 11.34 10.75 ns 100 a 16 ma std. 1.55 5.32 0.26 1.32 1.10 5.32 4.82 4.56 5.29 11.10 10.61 ns 100 a 24 ma std. 1.55 5.19 0.26 1.32 1.10 5.19 4.85 4.63 5.74 10.98 10.63 ns notes: 1. the minimum drive strength for any lvcmos 3.3 v softwar e configuration when run in wide range is 100 a. drive strengths displayed in software are supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-74 ? 3.3 v lvcmos wide range high slew ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 2.7 applicable to advanced banks drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 100 a 4 ma std. 1.55 4.75 0.26 1.32 1. 10 4.75 3.77 3.84 4.27 10.54 9.56 ns 100 a 6 ma std. 1.55 4.10 0.26 1.32 1. 10 4.10 3.19 4.24 4.98 9.88 8.98 ns 100 a 8 ma std. 1.55 4.10 0.26 1.32 1. 10 4.10 3.19 4.24 4.98 9.88 8.98 ns 100 a 12 ma std. 1.55 3.73 0.26 1.32 1.10 3.73 2.91 4.51 5.43 9.52 8.69 ns 100 a 16 ma std. 1.55 3.67 0.26 1.32 1. 10 3.67 2.85 4.57 5.55 9.46 8.64 ns 100 a 24 ma std. 1.55 3.70 0.26 1.32 1. 10 3.70 2.79 4.65 6.01 9.49 8.58 ns notes: 1. the minimum drive strength for any lvcmos 3.3 v softwar e configuration when run in wide range is 100 a. drive strengths displayed in software are supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. 3. software default selection highlighted in gray.
igloo dc and switching characteristics 2-54 revision 23 table 2-75 ? 3.3 v lvcmos wide range low slew ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 2.7 applicable to standard plus banks drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 100 a 4 ma std. 1.55 6.69 0.26 1.32 1. 10 6.69 5.73 3.41 3. 72 12.48 11.52 ns 100 a 6 ma std. 1.55 5.58 0.26 1.32 1.10 5.58 5.01 3.77 4.35 11.36 10.79 ns 100 a 8 ma std. 1.55 5.58 0.26 1.32 1.10 5.58 5.01 3.77 4.35 11.36 10.79 ns 100 a 12 ma std. 1.55 4.82 0.26 1.32 1. 10 4.82 4.44 4.02 4. 76 10.61 10.23 ns 100 a 16 ma std. 1.55 4.82 0.26 1.32 1. 10 4.82 4.44 4.02 4. 76 10.61 10.23 ns notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strengths displayed in software are supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-76 ? 3.3 v lvcmos wide range high slew ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 2.7 applicable to standard plus banks drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 100 a 4 ma std. 1.55 4.10 0.26 1.32 1. 10 4.10 3.30 3.40 3. 92 9.89 9.09 ns 100 a 6 ma std. 1.55 3.51 0.26 1.32 1. 10 3.51 2.79 3.76 4. 56 9.30 8.57 ns 100 a 8 ma std. 1.55 3.51 0.26 1.32 1. 10 3.51 2.79 3.76 4. 56 9.30 8.57 ns 100 a 12 ma std. 1.55 3.20 0.26 1.32 1.10 3.20 2.52 4.01 4.97 8.99 8.31 ns 100 a 16 ma std. 1.55 3.20 0.26 1.32 1. 10 3.20 2.52 4.01 4. 97 8.99 8.31 ns notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strengths displayed in software are supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. 3. software default selection highlighted in gray.
igloo low power flash fpgas revision 23 2-55 table 2-77 ? 3.3 v lvcmos wide range low slew ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case vcci = 2.7 applicable to standard banks drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 100 a 2 ma std. 1.55 6.44 0.26 1.29 1.10 6.44 5.64 2.99 3.28 ns 100 a 4 ma std. 1.55 6.44 0.26 1. 29 1.10 6.44 5.64 2.99 3.28 ns 100 a 6 ma std. 1.55 5.41 0.26 1. 29 1.10 5.41 4.91 3.35 3.89 ns 100 a 8 ma std. 1.55 5.41 0.26 1. 29 1.10 5.41 4.91 3.35 3.89 ns notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strengths displayed in software are supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-78 ? 3.3 v lvcmos wide range high slew ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 2.7 applicable to standard banks drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 100 a 2 ma std. 1.55 3.89 0.26 1. 29 1.10 3.89 3.13 2.99 3.45 ns 100 a 4 ma std. 1.55 3.89 0.26 1. 29 1.10 3.89 3.13 2.99 3.45 ns 100 a 6 ma std. 1.55 3.33 0.26 1. 29 1.10 3.33 2.62 3.34 4.07 ns 100 a 8 ma std. 1.55 3.33 0.26 1.29 1.10 3.33 2.62 3.34 4.07 ns notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strengths displayed in software are supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. 3. software default selection highlighted in gray.
igloo dc and switching characteristics 2-56 revision 23 2.5 v lvcmos low-voltage cmos for 2.5 v is an extension of the lvcmos standard (jesd8-5) used for general- purpose 2.5 v applications. table 2-79 ? minimum and maximum dc input and output levels applicable to advanced i/o banks 2.5 v lvcmos vil vih vol voh iol ioh iosh iosl iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.7 1.7 2.7 0.7 1.7 2 2 16 18 10 10 4 ma ?0.3 0.7 1.7 2.7 0.7 1.7 4 4 16 18 10 10 6 ma ?0.3 0.7 1.7 2.7 0.7 1.7 6 6 32 37 10 10 8 ma ?0.3 0.7 1.7 2.7 0.7 1.7 8 8 32 37 10 10 12 ma ?0.3 0.7 1.7 2.7 0.7 1.7 12 12 65 74 10 10 16 ma ?0.3 0.7 1.7 2.7 0.7 1.7 16 16 83 87 10 10 24 ma ?0.3 0.7 1.7 2.7 0.7 1.7 24 24 169 124 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 3. currents are measured at 100c junction temperature and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray. table 2-80 ? minimum and maximum dc input and output levels applicable to standard plus i/o banks 2.5 v lvcmos vil vih vol voh iol ioh iosh iosl iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.7 1.7 2.7 0.7 1.7 2 2 16 18 10 10 4 ma ?0.3 0.7 1.7 2.7 0.7 1.7 4 4 16 18 10 10 6 ma ?0.3 0.7 1.7 2.7 0.7 1.7 6 6 32 37 10 10 8 ma ?0.3 0.7 1.7 2.7 0.7 1.7 8 8 32 37 10 10 12 ma ?0.3 0.7 1.7 2.7 0.7 1.7 12 12 65 74 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 3. currents are measured at 100c junction temperature and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray.
igloo low power flash fpgas revision 23 2-57 table 2-81 ? minimum and maximum dc input and output levels applicable to standard i/o banks 2.5 v lvcmos vil vih vol voh iol ioh iosh iosl iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.7 1.7 3.6 0.7 1.7 2 2 16 18 10 10 4 ma ?0.3 0.7 1.7 3.6 0.7 1.7 4 4 16 18 10 10 6 ma ?0.3 0.7 1.7 3.6 0.7 1.7 6 6 32 37 10 10 8 ma ?0.3 0.7 1.7 3.6 0.7 1.7 8 8 32 37 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 3. currents are measured at 100c junction temperature and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray. figure 2-8 ? ac loading table 2-82 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) c load (pf) 02.51.25 note: *measuring point = vtrip. see table 2-29 on page 2-28 for a complete table of trip points. test point test point enable path datapath 5 pf r = 1 k r to vcci for t lz / t zl / t zls r to gnd for t hz / t zh / t zhs 5 pf for t zh / t zhs / t zl / t zls 5 pf for t hz / t lz
igloo dc and switching characteristics 2-58 revision 23 timing characteristics applies to 1.5 v dc core voltage table 2-83 ? 2.5 v lvcmos low slew ? appl ies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.3 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 0.97 4.96 0.18 1.08 0.66 5.06 4.59 2.26 2.00 8.66 8.19 ns 6 ma std. 0.97 4.15 0.18 1.08 0.66 4.24 3.94 2.54 2.51 7.83 7.53 ns 8 ma std. 0.97 4.15 0.18 1.08 0.66 4.24 3.94 2.54 2.51 7.83 7.53 ns 12 ma std. 0.97 3.57 0.18 1.08 0.66 3.65 3.47 2.73 2.84 7.24 7.06 ns 16 ma std. 0.97 3.39 0.18 1.08 0.66 3.46 3.36 2.78 2.92 7.06 6.95 ns 24 ma std. 0.97 3.38 0.18 1.08 0.66 3.38 3.38 2.83 3.25 6.98 6.98 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-84 ? 2.5 v lvcmos high slew ? app lies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.3 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 0.97 2.77 0.18 1.08 0.66 2.83 2.60 2.26 2.08 6.42 6.19 ns 6 ma std. 0.97 2.34 0.18 1.08 0.66 2.39 2.08 2.54 2.60 5.99 5.68 ns 8 ma std. 0.97 2.34 0.18 1.08 0.66 2.39 2.08 2.54 2.60 5.99 5.68 ns 12 ma std. 0.97 2.09 0.18 1.08 0.66 2.14 1.83 2.73 2.93 5.73 5.43 ns 16 ma std. 0.97 2.05 0.18 1.08 0.66 2.09 1.78 2.78 3.02 5.69 5.38 ns 24 ma std. 0.97 2.06 0.18 1.08 0.66 2.10 1.72 2.83 3.35 5.70 5.32 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-85 ? 2.5 v lvcmos low slew ? appl ies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.3 v applicable to standard plus banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 0.97 4.42 0.18 1.08 0.66 4.51 4.10 1.96 1.85 8.10 7.69 ns 6 ma std. 0.97 3.62 0.18 1.08 0.66 3.70 3.52 2.21 2.32 7.29 7.11 ns 8 ma std. 0.97 3.62 0.18 1.08 0.66 3.70 3.52 2.21 2.32 7.29 7.11 ns 12 ma std. 0.97 3.09 0.18 1.08 0.66 3.15 3.09 2.39 2.61 6.74 6.68 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-59 table 2-86 ? 2.5 v lvcmos high slew ? app lies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.3 v applicable to standard plus banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 0.97 2.36 0.18 1.08 0.66 2.41 2.21 1.96 1.92 6.01 5.81 ns 6 ma std. 0.97 1.97 0.18 1.08 0.66 2.01 1.75 2.21 2.40 5.61 5.34 ns 8 ma std. 0.97 1.97 0.18 1.08 0.66 2.01 1.75 2.21 2.40 5.61 5.34 ns 12 ma std. 0.97 1.75 0.18 1.08 0.66 1.79 1.52 2.38 2.70 5.39 5.11 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-87 ? 2.5 v lvcmos low slew ? appl ies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.3 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 2 ma std. 0.97 4.27 0.18 1.04 0.66 4.36 4.06 1.71 1.62 ns 4 ma std. 0.97 4.27 0.18 1.04 0.66 4.36 4.06 1.71 1.62 ns 6 ma std. 0.97 3.54 0.18 1.04 0.66 3.61 3.48 1.95 2.08 ns 8 ma std. 0.97 3.54 0.18 1.04 0.66 3.61 3.48 1.95 2.08 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-88 ? 2.5 v lvcmos high slew ? app lies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.3 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 2 ma std. 0.97 2.24 0.18 1.04 0.66 2.29 2.09 1.71 1.68 ns 4 ma std. 0.97 2.24 0.18 1.04 0.66 2.29 2.09 1.71 1.68 ns 6 ma std. 0.97 1.88 0.18 1.04 0.66 1.92 1.63 1.95 2.15 ns 8 ma std. 0.97 1.88 0.18 1.04 0.66 1.92 1.63 1.95 2.15 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo dc and switching characteristics 2-60 revision 23 applies to 1.2 v core voltage table 2-89 ? 2.5 v lvcmos low slew ? appl ies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 2.3 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 1.55 5.59 0.26 1.20 1.10 5. 68 5.14 2.82 2.80 11.47 10.93 ns 6 ma std. 1.55 4.76 0.26 1.20 1.10 4.84 4.47 3.10 3.33 10.62 10.26 ns 8 ma std. 1.55 4.76 0.26 1.20 1.10 4.84 4.47 3.10 3.33 10.62 10.26 ns 12 ma std. 1.55 4.17 0.26 1.20 1.10 4.23 3.99 3.30 3.67 10.02 9.77 ns 16 ma std. 1.55 3.98 0.26 1.20 1.10 4.04 3.88 3.34 3.76 9.83 9.66 ns 24 ma std. 1.55 3.90 0.26 1.20 1.10 3.96 3.90 3.40 4.09 9.75 9.68 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-90 ? 2.5 v lvcmos high slew ? app lies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 2.3 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 1.55 3.33 0.26 1.20 1.10 3.38 3.09 2.82 2.91 9.17 8.88 ns 6 ma std. 1.55 2.89 0.26 1.20 1.10 2.93 2.56 3.10 3.45 8.72 8.34 ns 8 ma std. 1.55 2.89 0.26 1.20 1.10 2.93 2.56 3.10 3.45 8.72 8.34 ns 12 ma std. 1.55 2.64 0.26 1.20 1.10 2.67 2.29 3.30 3.79 8.46 8.08 ns 16 ma std. 1.55 2.59 0.26 1.20 1.10 2.63 2.24 3.34 3.88 8.41 8.03 ns 24 ma std. 1.55 2.60 0.26 1.20 1.10 2.64 2.18 3.40 4.22 8.42 7.97 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-91 ? 2.5 v lvcmos low slew ? appl ies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 2.3 v applicable to standard plus banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 1.55 5.02 0.26 1.19 1.10 5.11 4.60 2.50 2. 62 10.89 10.38 ns 6 ma std. 1.55 4.21 0.26 1.19 1.10 4.27 4.00 2.76 3.10 10.06 9.79 ns 8 ma std. 1.55 4.21 0.26 1.19 1.10 4.27 4.00 2.76 3.10 10.06 9.79 ns 12 ma std. 1.55 3.66 0.26 1.19 1.10 3.71 3.55 2.94 3.41 9.50 9.34 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-61 table 2-92 ? 2.5 v lvcmos high slew ? app lies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 2.3 v applicable to standard plus banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 1.55 2.91 0.26 1.19 1.10 2.95 2.66 2.50 2.72 8.74 8.45 ns 6 ma std. 1.55 2.51 0.26 1.19 1.10 2.54 2.18 2.75 3.21 8.33 7.97 ns 8 ma std. 1.55 2.51 0.26 1.19 1.10 2.54 2.18 2.75 3.21 8.33 7.97 ns 12 ma std. 1.55 2.29 0.26 1.19 1.10 2.32 1.94 2.94 3.52 8.10 7.73 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-93 ? 2.5 v lvcmos low slew ? appl ies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 2.3 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 2 ma std. 1.55 4.85 0.26 1.15 1.10 4.93 4.55 2.13 2.24 ns 4 ma std. 1.55 4.85 0.26 1.15 1.10 4.93 4.55 2.13 2.24 ns 6 ma std. 1.55 4.09 0.26 1.15 1.10 4.16 3.95 2.38 2.71 ns 8 ma std. 1.55 4.09 0.26 1.15 1.10 4.16 3.95 2.38 2.71 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-94 ? 2.5 v lvcmos high slew ? app lies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 2.3 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 2 ma std. 1.55 2.76 0.26 1.15 1.10 2.80 2.52 2.13 2.32 ns 4 ma std. 1.55 2.76 0.26 1.15 1.10 2.80 2.52 2.13 2.32 ns 6 ma std. 1.55 2.39 0.26 1.15 1.10 2.42 2.05 2.38 2.80 ns 8 ma std. 1.55 2.39 0.26 1.15 1.10 2.42 2.05 2.38 2.80 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values.
igloo dc and switching characteristics 2-62 revision 23 1.8 v lvcmos low-voltage cmos for 1.8 v is an extension of the lvcmos standa rd (jesd8-5) used for general- purpose 1.8 v applications. it uses a 1.8 v input buffer and a push-pull output buffer. table 2-95 ? minimum and maximum dc input and output levels applicable to advanced i/o banks 1.8 v lvcmos vil vih vol voh iol ioh iosh iosl iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.35 * vcci 0.65 * vcci 1. 9 0.45 vcci ? 0.45 2 2 9 11 10 10 4 ma ?0.3 0.35 * vcci 0.65 * vcci 1. 9 0.45 vcci ? 0.45 4 4 17 22 10 10 6 ma ?0.3 0.35 * vcci 0.65 * vcci 1.9 0.45 vcci ? 0.45 6 6 35 44 10 10 8 ma ?0.3 0.35 * vcci 0.65 * vcci 1. 9 0.45 vcci ? 0.45 8 8 45 51 10 10 12 ma ?0.3 0.35 * vcci 0.65 * vcci 1.9 0.45 vcci ? 0.45 12 12 91 74 10 10 16 ma ?0.3 0.35 * vcci 0.65 * vcci 1.9 0.45 vcci ? 0.45 16 16 91 74 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 3. currents are measured at 100c junction temperature and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray. table 2-96 ? minimum and maximum dc input and output levels applicable to standard plus i/o banks 1.8 v lvcmos vil vih vol voh iol ioh iosh iosl iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.35 * vcci 0.65 * vcci 1. 9 0.45 vcci ? 0.45 2 2 9 11 10 10 4 ma ?0.3 0.35 * vcci 0.65 * vcci 1. 9 0.45 vcci ? 0.45 4 4 17 22 10 10 6 ma ?0.3 0.35 * vcci 0.65 * vcci 1.9 0.45 vcci ? 0.45 6 6 35 44 10 10 8 ma ?0.3 0.35 * vcci 0.65 * vcci 1.9 0.45 vcci ? 0.45 8 8 35 44 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 3. currents are measured at 100c junction temperature and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray.
igloo low power flash fpgas revision 23 2-63 timing characteristics 1.5 v dc core voltage table 2-97 ? minimum and maximum dc input and output levels applicable to standard i/o banks 1.8 v lvcmos vil vih vol voh iol ioh iosh iosl iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.35 * vcci 0.65 * vcci 3.6 0.45 vcci ? 0.45 2 2 9 11 10 10 4 ma ?0.3 0.35 * vcci 0.65 * vcci 3.6 0.45 vcci ? 0.45 4 4 17 22 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 3. currents are measured at 100c junction temperature and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray. figure 2-9 ? ac loading table 2-98 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) c load (pf) 01.80.95 note: *measuring point = vtrip. see table 2-29 on page 2-28 for a complete table of trip points. test point test point enable path datapath 5 pf r = 1 k r to vcci for t lz / t zl / t zls r to gnd for t hz / t zh / t zhs 5 pf for t zh / t zhs / t zl / t zls 5 pf for t hz / t lz table 2-99 ? 1.8 v lvcmos low slew ? appl ies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.7 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 0.97 6.38 0.18 1.01 0.66 6.51 5.93 2.33 1.56 10.10 9.53 ns 4 ma std. 0.97 5.35 0.18 1.01 0.66 5.46 5.04 2.67 2.38 9.05 8.64 ns 6 ma std. 0.97 4.62 0.18 1.01 0.66 4.71 4.44 2.90 2.79 8.31 8.04 ns 8 ma std. 0.97 4.37 0.18 1.01 0.66 4.46 4.31 2.95 2.89 8.05 7.90 ns 12 ma std. 0.97 4.32 0.18 1.01 0.66 4.37 4.32 3.03 3.30 7.97 7.92 ns 16 ma std. 0.97 4.32 0.18 1.01 0.66 4.37 4.32 3.03 3.30 7.97 7.92 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo dc and switching characteristics 2-64 revision 23 table 2-100 ? 1.8 v lvcmos high slew ? app lies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.7 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 0.97 3.25 0.18 1.01 0.66 3.21 3.25 2.33 1.61 6.80 6.85 ns 4 ma std. 0.97 2.62 0.18 1.01 0.66 2.68 2.51 2.66 2.46 6.27 6.11 ns 6 ma std. 0.97 2.31 0.18 1.01 0.66 2.36 2.15 2.90 2.87 5.95 5.75 ns 8 ma std. 0.97 2.25 0.18 1.01 0.66 2.30 2.08 2.95 2.98 5.89 5.68 ns 12 ma std. 0.97 2.24 0.18 1.01 0.66 2.29 2.00 3.02 3.40 5.88 5.60 ns 16 ma std. 0.97 2.24 0.18 1.01 0.66 2.29 2.00 3.02 3.40 5.88 5.60 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-101 ? 1.8 v lvcmos low slew ? appl ies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.7 v applicable to standard plus banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 0.97 5.78 0.18 1.01 0.66 5.90 5.32 1.95 1.47 9.49 8.91 ns 4 ma std. 0.97 4.75 0.18 1.01 0.66 4.85 4.54 2.25 2.21 8.44 8.13 ns 6 ma std. 0.97 4.07 0.18 1.01 0.66 4.15 3.98 2.46 2.58 7.75 7.57 ns 8 ma std. 0.97 4.07 0.18 1.01 0.66 4.15 3.98 2.46 2.58 7.75 7.57 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-102 ? 1.8 v lvcmos high slew ? app lies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.7 v applicable to standard plus banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 0.97 2.76 0.18 1.01 0.66 2.79 2.76 1.94 1.51 6.39 6.35 ns 4 ma std. 0.97 2.25 0.18 1.01 0.66 2.30 2.09 2.24 2.29 5.89 5.69 ns 6 ma std. 0.97 1.97 0.18 1.01 0.66 2.02 1.76 2.46 2.66 5.61 5.36 ns 8 ma std. 0.97 1.97 0.18 1.01 0.66 2.02 1.76 2.46 2.66 5.61 5.36 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-103 ? 1.8 v lvcmos low slew ? appl ies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.7 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 2 ma std. 0.97 5.63 0.18 0.98 0.66 5.74 5.30 1.68 1.24 ns 4 ma std. 0.97 4.69 0.18 0.98 0.66 4.79 4.52 1.97 1.98 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-65 table 2-104 ? 1.8 v lvcmos high slew ? app lies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.7 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 2 ma std. 2.62 0.18 0.98 0.66 2.67 2.59 1.67 1.29 2.62 ns 4 ma std. 2.18 0.18 0.98 0.66 2.22 1.93 1.97 2.06 2.18 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo dc and switching characteristics 2-66 revision 23 1.2 v dc core voltage table 2-105 ? 1.8 v lvcmos low slew ? appl ies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.7 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 6.97 0.26 1.11 1.10 7.08 6.48 2.87 2.29 12.87 12.27 ns 4 ma std. 1.55 5.91 0.26 1.11 1.10 6. 01 5.57 3.21 3.14 11.79 11.36 ns 6 ma std. 1.55 5.16 0.26 1.11 1.10 5. 24 4.95 3.45 3.55 11.03 10.74 ns 8 ma std. 1.55 4.90 0.26 1.11 1.10 4.98 4.81 3.50 3.66 10.77 10.60 ns 12 ma std. 1.55 4.83 0.26 1.11 1.10 4.90 4.83 3.58 4.08 10.68 10.61 ns 16 ma std. 1.55 4.83 0.26 1.11 1.10 4.90 4.83 3.58 4.08 10.68 10.61 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-106 ? 1.8 v lvcmos high slew ? app lies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.7 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 3.73 0.26 1.11 1.10 3.71 3.73 2.86 2.34 9.49 9.51 ns 4 ma std. 1.55 3.12 0.26 1.11 1.10 3.16 2.97 3.21 3.22 8.95 8.75 ns 6 ma std. 1.55 2.79 0.26 1.11 1.10 2.83 2.59 3.45 3.65 8.62 8.38 ns 8 ma std. 1.55 2.73 0.26 1.11 1.10 2.77 2.52 3.50 3.75 8.56 8.30 ns 12 ma std. 1.55 2.72 0.26 1.11 1.10 2.76 2.43 3.58 4.19 8.55 8.22 ns 16 ma std. 1.55 2.72 0.26 1.11 1.10 2.76 2.43 3.58 4.19 8.55 8.22 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-107 ? 1.8 v lvcmos low slew ? appl ies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.7 v applicable to standard plus banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 6.32 0.26 1.11 1.10 6.43 5.81 2.47 2.16 12.22 11.60 ns 4 ma std. 1.55 5.27 0.26 1.11 1.10 5. 35 5.01 2.78 2.92 11.14 10.79 ns 6 ma std. 1.55 4.56 0.26 1.11 1.10 4.64 4.44 3.00 3.30 10.42 10.22 ns 8 ma std. 1.55 4.56 0.26 1.11 1.10 4.64 4.44 3.00 3.30 10.42 10.22 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-67 table 2-108 ? 1.8 v lvcmos high slew ? app lies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.7 v applicable to standard plus banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 3.22 0.26 1.11 1.10 3.26 3.18 2.47 2.20 9.05 8.97 ns 4 ma std. 1.55 2.72 0.26 1.11 1.10 2.75 2.50 2.78 3.01 8.54 8.29 ns 6 ma std. 1.55 2.43 0.26 1.11 1.10 2.47 2.16 2.99 3.39 8.25 7.94 ns 8 ma std. 1.55 2.43 0.26 1.11 1.10 2.47 2.16 2.99 3.39 8.25 7.94 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-109 ? 1.8 v lvcmos low slew ? appl ies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.7 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 2 ma std. 1.55 6.13 0.26 1.08 1.10 6.24 5.79 2.08 1.78 ns 4 ma std. 1.55 5.17 0.26 1.08 1.10 5.26 4.98 2.38 2.54 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-110 ? 1.8 v lvcmos high slew ? app lies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.7 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 2 ma std. 3.06 0.26 1.08 1.10 3.10 3.01 2.08 1.83 3.06 ns 4 ma std. 2.60 0.26 1.08 1.10 2.64 2.33 2.38 2.62 2.60 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values.
igloo dc and switching characteristics 2-68 revision 23 1.5 v lvcmos (jesd8-11) low-voltage cmos for 1.5 v is an extension of the lvcmos standard (jesd8-5) used for general- purpose 1.5 v applications. it uses a 1.5 v input buffer and a push-pull output buffer. table 2-111 ? minimum and maximum dc input and output levels applicable to advanced i/o banks 1.5 v lvcmos vil vih vol voh iol ioh iosh iosl iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.35 * vcci 0.65 * vcci 1.575 0.25 * vcci 0.75 * vcci 2 2 13 16 10 10 4 ma ?0.3 0.35 * vcci 0.65 * vcci 1.575 0.25 * vcci 0.75 * vcci 4 4 25 33 10 10 6 ma ?0.3 0.35 * vcci 0.65 * vcci 1.575 0.25 * vcci 0.75 * vcci 6 6 32 39 10 10 8 ma ?0.3 0.35 * vcci 0.65 * vcci 1.575 0.25 * vcci 0.75 * vcci 8 8 66 55 10 10 12 ma ?0.3 0.35 * vcci 0.65 * vcci 1.575 0.25 * vcci 0.75 * vcci 12 12 66 55 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 3. currents are measured at 100c junction temperature and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray. table 2-112 ? minimum and maximum dc input and output levels applicable to standard plus i/o banks 1.5 v lvcmos vil vih vol voh iol ioh iosh iosl iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.35 * vcci 0.65 * vcci 1.575 0.25 * vcci 0.75 * vcci 2 2 13 16 10 10 4 ma ?0.3 0.35 * vcci 0.65 * vcci 1.575 0.25 * vcci 0.75 * vcci 4 4 25 33 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 3. currents are measured at 100c junction temperature and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray.
igloo low power flash fpgas revision 23 2-69 table 2-113 ? minimum and maximum dc input and output levels applicable to standard i/o banks 1.5 v lvcmos vil vih vol voh iol ioh iosh iosl iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.35 * vcci 0.65 * vcci 3.6 0.25 * vcci 0.75 * vcci 2 2 13 16 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. iih is the input leakage current per i/o pin over reco mmended operating conditions vih < vin igloo dc and switching characteristics 2-70 revision 23 timing characteristics 1.5 v dc core voltage table 2-115 ? 1.5 v lvcmos low slew ? appl ies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.4 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 0.97 6.62 0.18 1.17 0.66 6.75 6.06 2.79 2.31 10.35 9.66 ns 4 ma std. 0.97 5.75 0.18 1.17 0.66 5.86 5.34 3.06 2.78 9.46 8.93 ns 6 ma std. 0.97 5.43 0.18 1.17 0.66 5.54 5.19 3.12 2.90 9.13 8.78 ns 8 ma std. 0.97 5.35 0.18 1.17 0.66 5.46 5.20 2.63 3.36 9.06 8.79 ns 12 ma std. 0.97 5.35 0.18 1.17 0.66 5.46 5.20 2.63 3.36 9.06 8.79 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-116 ? 1.5 v lvcmos high slew ? app lies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.4 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 0.97 2.97 0.18 1.17 0.66 3.04 2.90 2.78 2.40 6.63 6.50 ns 4 ma std. 0.97 2.60 0.18 1.17 0.66 2.65 2.45 3.05 2.88 6.25 6.05 ns 6 ma std. 0.97 2.53 0.18 1.17 0.66 2.58 2.37 3.11 3.00 6.18 5.96 ns 8 ma std. 0.97 2.50 0.18 1.17 0.66 2.56 2.27 3.21 3.48 6.15 5.86 ns 12 ma std. 0.97 2.50 0.18 1.17 0.66 2.56 2.27 3.21 3.48 6.15 5.86 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-117 ? 1.5 v lvcmos low slew ? appl ies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.4 v applicable to standard plus banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 0.97 5.93 0.18 1.18 0.66 6.04 5.46 2.30 2.15 9.64 9.06 ns 4 ma std. 0.97 5.11 0.18 1.18 0.66 5.21 4.80 2.54 2.58 8.80 8.39 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-118 ? 1.5 v lvcmos high slew ? app lies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.4 v applicable to standard plus banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 0.97 2.58 0.18 1.18 0.66 2.64 2.41 2.29 2.24 6.23 6.01 ns 4 ma std. 0.97 2.25 0.18 1.18 0.66 2.30 2.00 2.53 2.68 5.89 5.59 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-71 table 2-119 ? 1.5 v lvcmos low slew ? appl ies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.4 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 2 ma std. 0.97 5.88 0.18 1.14 0.66 6.00 5.45 2.00 1.94 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-120 ? 1.5 v lvcmos high slew ? app lies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.4 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 2 ma std. 0.97 2.51 0.18 1.14 0.66 2.56 2.21 1.99 2.03 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo dc and switching characteristics 2-72 revision 23 1.2 v dc core voltage table 2-121 ? 1.5 v lvcmos low slew ? appl ies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.4 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 7.17 0.26 1.27 1.10 7.29 6.60 3.33 3.03 13.07 12.39 ns 4 ma std. 1.55 6.27 0.26 1.27 1.10 6.37 5.86 3.61 3.51 12.16 11.64 ns 6 ma std. 1.55 5.94 0.26 1.27 1.10 6. 04 5.70 3.67 3.64 11.82 11.48 ns 8 ma std. 1.55 5.86 0.26 1.27 1.10 5. 96 5.71 2.83 4.11 11.74 11.50 ns 12 ma std. 1.55 5.86 0.26 1.27 1.10 5. 96 5.71 2.83 4.11 11.74 11.50 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-122 ? 1.5 v lvcmos high slew ? app lies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.4 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 3.44 0.26 1.27 1.10 3.49 3.35 3.32 3.12 9.28 9.14 ns 4 ma std. 1.55 3.06 0.26 1.27 1.10 3.10 2.89 3.60 3.61 8.89 8.67 ns 6 ma std. 1.55 2.98 0.26 1.27 1.10 3.02 2.80 3.66 3.74 8.81 8.58 ns 8 ma std. 1.55 2.96 0.26 1.27 1.10 3.00 2.70 3.75 4.23 8.78 8.48 ns 12 ma std. 1.55 2.96 0.26 1.27 1.10 3.00 2.70 3.75 4.23 8.78 8.48 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-123 ? 1.5 v lvcmos low slew ? appl ies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.4 v applicable to standard plus banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 6.43 0.26 1.27 1.10 6.54 5.95 2.82 2.83 12.32 11.74 ns 4 ma std. 1.55 5.59 0.26 1.27 1.10 5. 68 5.27 3.07 3.27 11.47 11.05 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-124 ? 1.5 v lvcmos high slew ? app lies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.4 v applicable to standard plus banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 3.02 0.26 1.27 1.10 3.07 2.81 2.82 2.92 8.85 8.59 ns 4 ma std. 1.55 2.68 0.26 1.27 1.10 2.72 2.39 3.07 3.37 8.50 8.18 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-73 table 2-125 ? 1.5 v lvcmos low slew ? appl ies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.4 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 2 ma std. 1.55 6.35 0.26 1.22 1.10 6.46 5.93 2.40 2.46 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-126 ? 1.5 v lvcmos high slew ? app lies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.4 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 2 ma std. 1.55 2.92 0.26 1.22 1.10 2.96 2.60 2.40 2.56 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values.
igloo dc and switching characteristics 2-74 revision 23 1.2 v lvcmos (jesd8-12a) low-voltage cmos for 1.2 v complies with the lvcm os standard jesd8-12a for general purpose 1.2 v applications. it uses a 1.2 v input buffer and a push- pull output buffer. furthermore, all lvcmos 1.2 v software macros comply with lvcmos 1.2 v wide range as specified in the jesd8-12a specification. table 2-127 ? minimum and maximum dc input and output levels applicable to advanced i/o banks 1.2 v lvcmos vil vih vol voh iol ioh iosh iosl iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.35 * vcci 0.65 * vcci 1.26 0.25 * vcci 0.75 * vcci 2 2 20 26 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 3. currents are measured at 100c junction temperature and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray. table 2-128 ? minimum and maximum dc input and output levels applicable to standard plus i/o banks 1.2 v lvcmos vil vih vol voh i ol ioh iosh iosl iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.35 * vcci 0.65 * vcci 1.26 0.25 * vcci 0.75 * vcci 2 2 20 26 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 3. currents are measured at 100c junction temperature and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray. table 2-129 ? minimum and maximum dc input and output levels applicable to standard i/o banks 1.2 v lvcmos vil vih vol voh iol ioh iosh iosl iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 1 ma ?0.3 0.35 * vcci 0.65 * vcci 3.6 0.25 * vcci 0.75 * vcci 1 1 20 26 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 3. currents are measured at 100c junction temperature and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray.
igloo low power flash fpgas revision 23 2-75 timing characteristics 1.2 v dc core voltage figure 2-11 ? ac loading table 2-130 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) c load (pf) 01.20.65 note: *measuring point = vtrip. see table 2-29 on page 2-28 for a complete table of trip points. test point test point enable path datapath 5 pf r = 1 k r to vcci for t lz / t zl / t zls r to gnd for t hz / t zh / t zhs 5 pf for t zh / t zhs / t zl / t zls 5 pf for t hz / t lz table 2-131 ? 1.2 v lvcmos low slew commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.4 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 8.37 0.26 1.60 1.10 8.04 7.17 3.94 3.52 13.82 12.95 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-132 ? 1.2 v lvcmos high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.14 v applicable to advanced i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 3.60 0.26 1.60 1.10 3.47 3.36 3.93 3.65 9.26 9.14 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-133 ? 1.2 v lvcmos high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.14 v applicable to standard plus i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 7.59 0.26 1.59 1.10 7.29 6.54 3.30 3.35 13.08 12.33 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-134 ? 1.2 v lvcmos high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.14 v applicable to standard plus i/o banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 3.22 0.26 1.59 1.10 3.11 2.78 3.29 3.48 8.90 8.57 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo dc and switching characteristics 2-76 revision 23 1.2 v lvcmos wide range table 2-135 ? 1.2 v lvcmos high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.14 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 1 ma std. 1.55 8.57 0.26 1.53 1.10 8.23 7.38 2.51 2.39 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-136 ? 1.2 v lvcmos high slew ? app lies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 1.14 v applicable to standard banks drive strength speed grade t dout t dp t din t py t eout t zl t zh t lz t hz units 1 ma std. 1.55 3.59 0.26 1.53 1.10 3.47 3.06 2.51 2.49 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-137 ? minimum and maximum dc input and output levels for lvcmos 1.2 v wide range applicable to advanced i/o banks 1.2 v lvcmos wide range vil vih vol voh iol ioh iosl iosh iil 2 iih 3 drive strength equivalent software default drive strength option 1 min. v max. v min. v max. v max. v min. vmama max. ma 4 max. ma 4 a 5 a 5 100 a 2 ma ?0.3 0.35 * vcci 0.65 * vcci 1.26 0.25 * vcci 0.75 * vcci 100 100 20 26 10 10 notes: 1. the minimum drive strength for the default lvcmos 1.2 v software configuration when run in wide range is 100 a. the drive strength displayed in software is supported in normal range only. for a detailed i/v curve, refer to the ibis models. 2. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 3. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges. 4. currents are measured at 100c junction temperature and maximum voltage. 5. currents are measured at 85c junction temperature. 6. software default selection highlighted in gray.
igloo low power flash fpgas revision 23 2-77 timing characteristics refer to lvcmos 1.2 v (normal range) "timing characteristics" on page 2-75 for worst-case timing. table 2-138 ? minimum and maximum dc input and output levels for lvcmos 1.2 v wide range applicable to standard plus i/o banks 1.2 v lvcmos wide range vil vih vol voh iol ioh iosl iosh iil 2 iih 3 drive strength equivalent software default drive strength option 1 min. v max. v min. v max. v max. v min. vmama max. ma 4 max. ma 4 a 5 a 5 100 a 2ma ?0.3 0.35 * vcci 0.65 * vcci 1.26 0.25 * vcci 0.75 * vcci 100 100 20 26 10 10 notes: 1. the minimum drive strength for the default lvcmos 1.2 v software configuration when run in wide range is 100 a. the drive strength displayed in software is supported in no rmal range only. for a detailed i/v curve, refer to the ibis models. 2. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 3. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 4. currents are measured at 100c junction temperature and maximum voltage. 5. currents are measured at 85c junction temperature. 6. software default selection highlighted in gray. table 2-139 ? minimum and maximum dc input and output levels for lvcmos 1.2 v wide range applicable to standard i/o banks 1.2 v lvcmos wide range vil vih vol voh iol ioh iosl iosh iil 2 iih 3 drive strength equivalent software default drive strength option 1 min. v max. v min. v max. v max. v min. vmama max. ma 4 max. ma 4 a 5 a 5 100 a 1 ma ?0.3 0.35 * vcci 0.65 * vcci 3.6 0.25 * vcci 0.75 * vcci 100 100 20 26 10 10 notes: 1. the minimum drive strength for the default lvcmos 1.2 v software configuration when run in wide range is 100 a. the drive strength displayed in software is supported in normal range only. for a detailed i/v curve, refer to the ibis models. 2. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 3. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges 4. currents are measured at 100c junction temperature and maximum voltage. 5. currents are measured at 85c junction temperature. 6. software default selection highlighted in gray. table 2-140 ? 1.2 v lvcmos wide range ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) c load (pf) 01.20.65 note: *measuring point = vtrip. see table 2-29 on page 2-28 for a complete table of trip points.
igloo dc and switching characteristics 2-78 revision 23 3.3 v pci, 3.3 v pci-x peripheral component interface for 3.3 v standard specifies support for 33 mhz and 66 mhz pci bus applications. ac loadings are defined per the pci/pci-x specificat ions for the datapath; microsemi loadings for enable path characterization are described in figure 2-12 . ac loadings are defined per pci/pc i-x specifications for the datapath; microsemi loading for tristate is described in table 2-142 . timing characteristics 1.5 v dc core voltage table 2-141 ? minimum and maximum dc input and output levels applicable to advanced and standard plus i/os 3.3 v pci/pci-x vil vih vol voh iol ioh iosh iosl iil iih drive strength min. v max. v min. v max. v max. v min. vmama max. ma 1 max. ma 1 a 2 a 2 per pci specification per pci curves 10 10 notes: 1. currents are measured at 100c junction temperature and maximum voltage. 2. currents are measured at 85c junction temperature. figure 2-12 ? ac loading test point enable path r to vcci for t lz / t zl / t zls 10 pf for t zh / t zhs / t zl / t zls 5 pf for t hz / t lz r to gnd for t hz / t zh / t zhs r = 1 k test point datapath r = 25 r to vcci for t dp (f) r to gnd for t dp (r) table 2-142 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) c load (pf) 0 3.3 0.285 * vcci for t dp(r) 0.615 * vcci for t dp(f) 10 note: *measuring point = vtrip. see table 2-29 on page 2-28 for a complete table of trip points. table 2-143 ? 3.3 v pci/pci-x commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v applicable to advanced i/o banks speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.97 2.32 0.19 0.70 0.66 2. 37 1.78 2.67 3.05 5.96 5.38 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-144 ? 3.3 v pci/pci-x commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v applicable to standard plus i/o banks speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.97 1.97 0.19 0.70 0.66 2. 01 1.50 2.36 2.79 5.61 5.10 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-79 1.2 v dc core voltage differential i/o characteristics physical implementation configuration of the i/o modules as a differential pa ir is handled by microsemi designer software when the user instantiates a differential i/o macro in the design. differential i/os can also be used in conjuncti on with the embedded input r egister (inreg), output register (outreg), enable register (enreg), an d double data rate (ddr). however, there is no support for bidirectional i/os or tristates with the lvpecl standards. lvds low-voltage differential signaling (ansi/tia/eia-644 ) is a high-speed, differential i/o standard. it requires that one data bit be carried through two si gnal lines, so two pins are needed. it also requires external resistor termination. the full implementation of the lvds transmitte r and receiver is shown in an example in figure 2-13 . the building blocks of the lvds transmitter-receiver are one transmitte r macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. the values for the three driver resistors are different from those used in the lvpecl implementation because the output standard specifications are different. along with lvds i/o, igloo also supports bu s lvds structure and multipoint lvds (m-lvds) configuration (up to 40 nodes). table 2-145 ? 3.3 v pci/pci-x commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 3.0 v applicable to advanced i/o banks speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 1.55 2.91 0.25 0.86 1.10 2. 95 2.29 3.25 3.93 8.74 8.08 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. table 2-146 ? 3.3 v pci/pci-x commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 3.0 v applicable to standard plus i/o banks speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 1.55 2.53 0.25 0.85 1.10 2. 57 1.98 2.93 3.64 8.35 7.76 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. figure 2-13 ? lvds circuit diag ram and board-level implementation 140 ? 100 ? z 0 = 50 ? z 0 = 50 ? 165 ? 165 ? + ? p n p n inbuf_lvds outbuf_lvds fpga fpga bourns part number: cat16-lv4f12
igloo dc and switching characteristics 2-80 revision 23 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-147 ? minimum and maximum dc input and output levels dc parameter description min. typ. max. units vcci supply voltage 2.375 2.5 2.625 v vol output low voltage 0.9 1.075 1.25 v voh output high voltage 1.25 1.425 1.6 v iol 1 output lower current 0.65 0.91 1.16 ma ioh 1 output high current 0.65 0.91 1.16 ma vi input voltage 0 2.925 v iih 2 input high leakage current 10 a iil 2 input low leakage current 10 a vodiff differential output voltage 250 350 450 mv vocm output common-mode voltage 1.125 1.25 1.375 v vicm input common-mode voltage 0.05 1.25 2.35 v vidiff 4 input differential voltage 100 350 mv notes: 1. iol/ioh is defined by vodiff/(resistor network) 2. currents are measured at 85c junction temperature. table 2-148 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) 1.075 1.325 cross point note: *measuring point = vtrip. see table 2-29 on page 2-28 for a complete table of trip points. table 2-149 ? lvds ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.3 v applicable to standard banks speed grade t dout t dp t din t py units std. 0.97 1.67 0.19 1.31 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 and table 2-7 on page 2-7 for derating values. table 2-150 ? lvds ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 2.3 v applicable to standard banks speed grade t dout t dp t din t py units std. 1.55 2.19 0.25 1.52 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 and table 2-7 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-81 b-lvds/m-lvds bus lvds (b-lvds) and multipoint lvds (m-lvds) s pecifications extend the existing lvds standard to high-performance multipoint bus applications. multid rop and multipoint bus configurations may contain any combination of drivers, receiv ers, and transceivers. microsemi lv ds drivers provide the higher drive current required by b-lvds and m-lvds to accomm odate the loading. the drivers require series terminations for better signal quality and to control voltage swing. termination is also required at both ends of the bus since the driver can be located anywhere on the bus. these configurations can be implemented using the tribuf_lvds and bibuf_lvds macros along with appr opriate terminations. multipoint designs using microsemi lvds macros can achieve up to 200 mhz with a maximum of 20 loads. a sample application is given in figure 2-14 . the input and output buffer delays are available in the lvds section in table 2-149 on page 2-80 and table 2-150 on page 2-80 . example: for a bus consisting of 20 equidistant lo ads, the following terminations provide the required differential voltage, in worst-case industrial operating conditions, at the farthest receiver: r s =60 ? and r t =70 ? , given z 0 =50 ? (2") and z stub =50 ? (~1.5"). lvpecl low-voltage positive emitter-coupled logic (lvpecl) is another differ ential i/o standard. it requires that one data bit be carried through two signal lines . like lvds, two pins are needed. it also requires external resistor termination. the full implementation of the lvds transmitte r and receiver is shown in an example in figure 2-15 . the building blocks of the lvpecl transmitter-receiver are one transm itter macro, one rece iver macro, three board resistors at the transmitter end, and one resistor at the receiver end. the values for the three driver resistors are different from those used in the lvds implementation beca use the output standard specifications are different. figure 2-14 ? b-lvds/m-lvds multipoint application using lvds i/o buffers ... r t r t bibuf_lvds r + - t + - r + - t + - d + - en en en en en receiver transceiver receiver transceiver driver r s r s r s r s r s r s r s r s r s r s z stub z stub z stub z stub z stub z stub z stub z stub z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 figure 2-15 ? lvpecl circuit diagram and board-level im plementation 187 w 100 ? z 0 = 50 ? z 0 = 50 ? 100 ? 100 ? + ? p n p n inbuf_lvpecl outbuf_lvpecl fpga fpga bourns part number: cat16-pc4f12
igloo dc and switching characteristics 2-82 revision 23 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-151 ? minimum and maximum dc input and output levels dc parameter description min. max. min. max. min. max. units vcci supply voltage 3.0 3.3 3.6 v vol output low voltage 0.96 1.27 1.06 1.43 1.30 1.57 v voh output high voltage 1.8 2.11 1.92 2.28 2.13 2.41 v vil, vih input low, input high voltages 0 3.6 0 3.6 0 3.6 v v odiff differential output voltage 0.625 0.97 0.625 0.97 0.625 0.97 v v ocm output common-mode voltage 1.762 1.98 1.762 1.98 1.762 1.98 v v icm input common-mode voltage 1.01 2.57 1.01 2.57 1.01 2.57 v v idiff input differential voltage 300 300 300 mv table 2-152 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) 1.64 1.94 cross point note: *measuring point = vtrip. see table 2-28 on page 2-102 for a complete table of trip points. table 2-153 ? lvpecl ? applies to 1. 5 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v applicable to standard banks speed grade t dout t dp t din t py units std. 0.97 1.67 0.19 1.16 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-154 ? lvpecl ? applies to 1. 2 v dc core voltage commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v, worst-case vcci = 3.0 v applicable to standard banks speed grade t dout t dp t din t py units std. 1.55 2.24 0.25 1.37 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-83 i/o register specifications fully registered i/o buffers with synchronous enable and asynchronous preset figure 2-16 ? timing model of registered i/o buffers with synchronous enable and asynchronous preset inbuf inbuf inbuf tribuf clkbuf inbuf inbuf clkbuf data input i/o register with: active high enable active high preset positive-edge triggered data output register and enable output register with: active high enable active high preset postive-edge triggered pad out clk enable preset data_out data eout dout enable clk dq dfn1e1p1 pre dq dfn1e1p1 pre dq dfn1e1p1 pre d_enable a b c d e e e e f g h i j l k y core array
igloo dc and switching characteristics 2-84 revision 23 table 2-155 ? parameter definition and measuring nodes parameter name parameter definition measuring nodes (from, to)* t oclkq clock-to-q of the output data register h, dout t osud data setup time for the output data register f, h t ohd data hold time for the output data register f, h t osue enable setup time for the output data register g, h t ohe enable hold time for the output data register g, h t opre2q asynchronous preset-to-q of the output data register l, dout t orempre asynchronous preset removal time for the output data register l, h t orecpre asynchronous preset recovery time for the output data register l, h t oeclkq clock-to-q of the output enable register h, eout t oesud data setup time for the output enable register j, h t oehd data hold time for the output enable register j, h t oesue enable setup time for the output enable register k, h t oehe enable hold time for the output enable register k, h t oepre2q asynchronous preset-to-q of the output enable register i, eout t oerempre asynchronous preset removal time for the output enable register i, h t oerecpre asynchronous preset recovery time for the output enable register i, h t iclkq clock-to-q of the input data register a, e t isud data setup time for the input data register c, a t ihd data hold time for the input data register c, a t isue enable setup time for the input data register b, a t ihe enable hold time for the input data register b, a t ipre2q asynchronous preset-to-q of th e input data register d, e t irempre asynchronous preset removal time for the input data register d, a t irecpre asynchronous preset recovery time for the input data register d, a note: *see figure 2-16 on page 2-83 for more information.
igloo low power flash fpgas revision 23 2-85 fully registered i/o buffers with synchronous enable and asynchronous clear figure 2-17 ? timing model of the registered i/o buffers with synchronous enable and asynchronous clear enable clk pad out clk enable clr data_out data y aa eout dout core array dq dfn1e1c1 e clr dq dfn1e1c1 e clr dq dfn1e1c1 e clr d_enable bb cc dd ee ff gg ll hh jj kk clkbuf inbuf inbuf tribuf inbuf inbuf clkbuf inbuf data input i/o register with active high enable active high clear positive-edge triggered data output register and enable output register with active high enable active high clear positive-edge triggered
igloo dc and switching characteristics 2-86 revision 23 table 2-156 ? parameter definition and measuring nodes parameter name parameter definition measuring nodes (from, to)* t oclkq clock-to-q of the output data register hh, dout t osud data setup time for the output data register ff, hh t ohd data hold time for the output data register ff, hh t osue enable setup time for the output data register gg, hh t ohe enable hold time for the output data register gg, hh t oclr2q asynchronous clear-to-q of the output data register ll, dout t oremclr asynchronous clear removal time for the output data register ll, hh t orecclr asynchronous clear recovery time for the output data register ll, hh t oeclkq clock-to-q of the output enable register hh, eout t oesud data setup time for the ou tput enable register jj, hh t oehd data hold time for the output enable register jj, hh t oesue enable setup time for the output enable register kk, hh t oehe enable hold time for the output enable register kk, hh t oeclr2q asynchronous clear-to-q of the output enable register ii, eout t oeremclr asynchronous clear removal time fo r the output enable register ii, hh t oerecclr asynchronous clear recovery time for the output enable register ii, hh t iclkq clock-to-q of the input data register aa, ee t isud data setup time for the input data register cc, aa t ihd data hold time for the input data register cc, aa t isue enable setup time for the input data register bb, aa t ihe enable hold time for the input data register bb, aa t iclr2q asynchronous clear-to-q of the input data register dd, ee t iremclr asynchronous clear removal time for the input data register dd, aa t irecclr asynchronous clear recovery time for the input data register dd, aa note: *see figure 2-17 on page 2-85 for more information.
igloo low power flash fpgas revision 23 2-87 input register timing characteristics 1.5 v dc core voltage figure 2-18 ? input register timing diagram 50% preset clear out_1 clk data enable t isue 50% 50% t isud t ihd 50% 50% t iclkq 1 0 t ihe t irecpre t irempre t irecclr t iremclr t iwclr t iwpre t ipre2q t iclr2q t ickmpwh t ickmpwl 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% table 2-157 ? input data register propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description std. units t iclkq clock-to-q of the input data register 0.42 ns t isud data setup time for the input data register 0.47 ns t ihd data hold time for the input data register 0.00 ns t isue enable setup time for the input data register 0.67 ns t ihe enable hold time for the input data register 0.00 ns t iclr2q asynchronous clear-to-q of the input data register 0.79 ns t ipre2q asynchronous preset-to-q of th e input data register 0.79 ns t iremclr asynchronous clear removal time for the input data register 0.00 ns t irecclr asynchronous clear recovery time for the input data register 0.24 ns t irempre asynchronous preset removal time for the input data register 0.00 ns t irecpre asynchronous preset recovery time for the input data register 0.24 ns t iwclr asynchronous clear minimum pulse widt h for the input data register 0.19 ns t iwpre asynchronous preset minimum pulse widt h for the input data register 0.19 ns t ickmpwh clock minimum pulse width high for the input data register 0.31 ns t ickmpwl clock minimum pulse width low for the input data register 0.28 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo dc and switching characteristics 2-88 revision 23 1.2 v dc core voltage output register table 2-158 ? input data register propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v parameter description std. units t iclkq clock-to-q of the input data register 0.68 ns t isud data setup time for the input data register 0.97 ns t ihd data hold time for the input data register 0.00 ns t isue enable setup time for the input data register 1.02 ns t ihe enable hold time for the input data register 0.00 ns t iclr2q asynchronous clear-to-q of the input data register 1.19 ns t ipre2q asynchronous preset-to-q of th e input data register 1.19 ns t iremclr asynchronous clear removal time for the input data register 0.00 ns t irecclr asynchronous clear recovery time for the input data register 0.24 ns t irempre asynchronous preset removal time for the input data register 0.00 ns t irecpre asynchronous preset recovery time for the input data register 0.24 ns t iwclr asynchronous clear minimum pulse widt h for the input data register 0.19 ns t iwpre asynchronous preset minimum pulse widt h for the input data register 0.19 ns t ickmpwh clock minimum pulse width high for the input data register 0.31 ns t ickmpwl clock minimum pulse width low for the input data register 0.28 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values. figure 2-19 ? output register timing diagram preset clear dout clk data_out enable t osue 50% 50% t osud t ohd 50% 50% t oclkq 1 0 t ohe t orecpre t orempre t orecclr t oremclr t owclr t owpre t opre2q t oclr2q t ockmpwh t ockmpwl 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%
igloo low power flash fpgas revision 23 2-89 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-159 ? output data register propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description std. units t oclkq clock-to-q of the output data register 1.00 ns t osud data setup time for the ou tput data register 0.51 ns t ohd data hold time for the output data register 0.00 ns t osue enable setup time for the output data register 0.70 ns t ohe enable hold time for the output data register 0.00 ns t oclr2q asynchronous clear-to-q of the output data register 1.34 ns t opre2q asynchronous preset-to-q of t he output data register 1.34 ns t oremclr asynchronous clear removal time fo r the output data register 0.00 ns t orecclr asynchronous clear recovery time for the output data register 0.24 ns t orempre asynchronous preset removal time for the output data register 0.00 ns t orecpre asynchronous preset recovery time for the output data register 0.24 ns t owclr asynchronous clear minimum pulse width for the output data register 0.19 ns t owpre asynchronous preset minimum pulse widt h for the output data register 0.19 ns t ockmpwh clock minimum pulse width high for the output data register 0.31 ns t ockmpwl clock minimum pulse width low for the output data register 0.28 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-160 ? output data register propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v parameter description std. units t oclkq clock-to-q of the output data register 1.52 ns t osud data setup time for the ou tput data register 1.15 ns t ohd data hold time for the output data register 0.00 ns t osue enable setup time for the output data register 1.11 ns t ohe enable hold time for the output data register 0.00 ns t oclr2q asynchronous clear-to-q of the output data register 1.96 ns t opre2q asynchronous preset-to-q of t he output data register 1.96 ns t oremclr asynchronous clear removal time fo r the output data register 0.00 ns t orecclr asynchronous clear recovery time for the output data register 0.24 ns t orempre asynchronous preset removal time for the output data register 0.00 ns t orecpre asynchronous preset recovery time for the output data register 0.24 ns t owclr asynchronous clear minimum pulse width for the output data register 0.19 ns t owpre asynchronous preset minimum pulse widt h for the output data register 0.19 ns t ockmpwh clock minimum pulse width high for the output data register 0.31 ns t ockmpwl clock minimum pulse width low for the output data register 0.28 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values.
igloo dc and switching characteristics 2-90 revision 23 output enable register timing characteristics 1.5 v dc core voltage figure 2-20 ? output enable register timing diagram 50% preset clear eout clk d_enable enable t oesue 50% 50% t oesud t oehd 50% 50% t oeclkq 1 0 t oehe t oerecpre t oerempre t oerecclr t oeremclr t oewclr t oewpre t oepre2q t oeclr2q t oeckmpwh t oeckmpwl 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% table 2-161 ? output enable register propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description std. units t oeclkq clock-to-q of the output enable register 0.75 ns t oesud data setup time for the output enable register 0.51 ns t oehd data hold time for the output enable register 0.00 ns t oesue enable setup time for the output enable register 0.73 ns t oehe enable hold time for the output enable register 0.00 ns t oeclr2q asynchronous clear-to-q of the output enable register 1.13 ns t oepre2q asynchronous preset-to-q of the output enable register 1.13 ns t oeremclr asynchronous clear removal time for the output enable register 0.00 ns t oerecclr asynchronous clear recovery time for the output enable register 0.24 ns t oerempre asynchronous preset removal time for the output enable register 0.00 ns t oerecpre asynchronous preset recovery time for the output enable register 0.24 ns t oewclr asynchronous clear minimum pulse width for the output enable register 0.19 ns t oewpre asynchronous preset minimum pulse width for the output enable register 0.19 ns t oeckmpwh clock minimum pulse width high for the output enable register 0.31 ns t oeckmpwl clock minimum pulse width low for the output enable register 0.28 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-91 1.2 v dc core voltage table 2-162 ? output enable register propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v parameter description std. units t oeclkq clock-to-q of the output enable register 1.10 ns t oesud data setup time for the output enable register 1.15 ns t oehd data hold time for the output enable register 0.00 ns t oesue enable setup time for the output enable register 1.22 ns t oehe enable hold time for the output enable register 0.00 ns t oeclr2q asynchronous clear-to-q of the output enable register 1.65 ns t oepre2q asynchronous preset-to-q of the output enable register 1.65 ns t oeremclr asynchronous clear removal time for the output enable register 0.00 ns t oerecclr asynchronous clear recovery time for the output enable register 0.24 ns t oerempre asynchronous preset removal time for the output enable register 0.00 ns t oerecpre asynchronous preset recovery time for the output enable register 0.24 ns t oewclr asynchronous clear minimum pulse width for the output enable register 0.19 ns t oewpre asynchronous preset minimum pulse width for the output enable register 0.19 ns t oeckmpwh clock minimum pulse width high for the output enable register 0.31 ns t oeckmpwl clock minimum pulse width low for the output enable register 0.28 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values.
igloo dc and switching characteristics 2-92 revision 23 ddr module specifications input ddr module figure 2-21 ? input ddr timing model table 2-163 ? parameter definitions parameter name parameter definition measuring nodes (from, to) t ddriclkq1 clock-to-out out_qr b, d t ddriclkq2 clock-to-out out_qf b, e t ddrisud data setup time of ddr input a, b t ddrihd data hold time of ddr input a, b t ddriclr2q1 clear-to-out out_qr c, d t ddriclr2q2 clear-to-out out_qf c, e t ddriremclr clear removal c, b t ddrirecclr clear recovery c, b input ddr data clk clkbuf inbuf out_qf (to core) ff2 ff1 inbuf clr ddr_in e a b c d out_qr (to core)
igloo low power flash fpgas revision 23 2-93 timing characteristics 1.5 v dc core voltage figure 2-22 ? input ddr timing diagram t ddriclr2q2 t ddriremclr t ddrirecclr t ddriclr2q1 12 3 4 5 6 7 8 9 clk data clr out_qr out_qf t ddriclkq1 2 4 6 3 5 7 t ddrihd t ddrisud t ddriclkq2 table 2-164 ? input ddr propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description std. units t ddriclkq1 clock-to-out out_qr for input ddr 0.48 ns t ddriclkq2 clock-to-out out_qf for input ddr 0.65 ns t ddrisud1 data setup for input ddr (negedge) 0.50 ns t ddrisud2 data setup for input ddr (posedge) 0.40 ns t ddrihd1 data hold for input ddr (negedge) 0.00 ns t ddrihd2 data hold for input ddr (posedge) 0.00 ns t ddriclr2q1 asynchronous clear-to-out out_qr for input ddr 0.82 ns t ddriclr2q2 asynchronous clear-to-out ou t_qf for input ddr 0.98 ns t ddriremclr asynchronous clear removal time for input ddr 0.00 ns t ddrirecclr asynchronous clear recovery time for input ddr 0.23 ns t ddriwclr asynchronous clear minimum pulse width for input ddr 0.19 ns t ddrickmpwh clock minimum pulse width high for input ddr 0.31 ns t ddrickmpwl clock minimum pulse width low for input ddr 0.28 ns f ddrimax maximum frequency for input ddr 250.00 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values.
igloo dc and switching characteristics 2-94 revision 23 1.2 v dc core voltage table 2-165 ? input ddr propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v parameter description std. units t ddriclkq1 clock-to-out out_qr for input ddr 0.76 ns t ddriclkq2 clock-to-out out_qf for input ddr 0.94 ns t ddrisud1 data setup for input ddr (negedge) 0.93 ns t ddrisud2 data setup for input ddr (posedge) 0.84 ns t ddrihd1 data hold for input ddr (negedge) 0.00 ns t ddrihd2 data hold for input ddr (posedge) 0.00 ns t ddriclr2q1 asynchronous clear-to-out out_qr for input ddr 1.23 ns t ddriclr2q2 asynchronous clear-to-out ou t_qf for input ddr 1.42 ns t ddriremclr asynchronous clear removal time for input ddr 0.00 ns t ddrirecclr asynchronous clear recovery time for input ddr 0.24 ns t ddriwclr asynchronous clear minimum pulse width for input ddr 0.19 ns t ddrickmpwh clock minimum pulse width high for input ddr 0.31 ns t ddrickmpwl clock minimum pulse width low for input ddr 0.28 ns f ddrimax maximum frequency for input ddr 160.00 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-95 output ddr module figure 2-23 ? output ddr timing model table 2-166 ? parameter definitions parameter name parameter defini tion measuring no des (from, to) t ddroclkq clock-to-out b, e t ddroclr2q asynchronous clear-to-out c, e t ddroremclr clear removal c, b t ddrorecclr clear recovery c, b t ddrosud1 data setup data_f a, b t ddrosud2 data setup data_r d, b t ddrohd1 data hold data_f a, b t ddrohd2 data hold data_r d, b data_f (from core) clk clkbuf out ff2 inbuf clr ddr_out output ddr ff1 0 1 x x x x x x x a b d e c c b outbuf data_r (from core)
igloo dc and switching characteristics 2-96 revision 23 timing characteristics 1.5 v dc core voltage figure 2-24 ? output ddr timing diagram 11 6 1 7 2 8 3 910 45 28 3 9 t ddroremclr t ddrohd1 t ddroremclr t ddrohd2 t ddrosud2 t ddroclkq t ddrorecclr clk data_r data_f clr out t ddroclr2q 710 4 table 2-167 ? output ddr propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description std. units t ddroclkq clock-to-out of ddr for output ddr 1.07 ns t ddrosud1 data_f data setup for output ddr 0.67 ns t ddrosud2 data_r data setup for output ddr 0.67 ns t ddrohd1 data_f data hold for output ddr 0.00 ns t ddrohd2 data_r data hold for output ddr 0.00 ns t ddroclr2q asynchronous clear-to-out for output ddr 1.38 ns t ddroremclr asynchronous clear removal time for output ddr 0.00 ns t ddrorecclr asynchronous clear recovery time for output ddr 0.23 ns t ddrowclr1 asynchronous clear minimum pulse width for output ddr 0.19 ns t ddrockmpwh clock minimum pulse width high for the output ddr 0.31 ns t ddrockmpwl clock minimum pulse width low for the output ddr 0.28 ns f ddomax maximum frequency for the output ddr 250.00 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-97 1.2 v dc core voltage table 2-168 ? output ddr propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v parameter description std. units t ddroclkq clock-to-out of ddr for output ddr 1.60 ns t ddrosud1 data_f data setup for output ddr 1.09 ns t ddrosud2 data_r data setup for output ddr 1.16 ns t ddrohd1 data_f data hold for output ddr 0.00 ns t ddrohd2 data_r data hold for output ddr 0.00 ns t ddroclr2q asynchronous clear-to-out for output ddr 1.99 ns t ddroremclr asynchronous clear removal time for output ddr 0.00 ns t ddrorecclr asynchronous clear recovery time for output ddr 0.24 ns t ddrowclr1 asynchronous clear minimum pulse width for output ddr 0.19 ns t ddrockmpwh clock minimum pulse width high for the output ddr 0.31 ns t ddrockmpwl clock minimum pulse width low for the output ddr 0.28 ns f ddomax maximum frequency for the output ddr 160.00 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values.
igloo dc and switching characteristics 2-98 revision 23 versatile characteristics versatile specifications as a combinatorial module the igloo library offers all combinations of lut-3 combinatorial functions. in this section, timing characteristics are presented for a sample of the library. for more details, refer to the igloo, fusion, and proasic3 macro library guide . figure 2-25 ? sample of combinatorial cells maj3 a c by mux2 b 0 1 a s y ay b b a xor2 y nor2 b a y b a y or2 inv a y and2 b a y nand3 b a c xor3 y b a c nand2
igloo low power flash fpgas revision 23 2-99 figure 2-26 ? timing model and waveforms net a y b length = 1 versatile net a y b length = 1 versatile net a y b length = 1 versatile net a y b length = 1 versatile nand2 or any combinatorial logic nand2 or any combinatorial logic nand2 or any combinatorial logic nand2 or any combinatorial logic t pd = max(t pd(rr) , t pd(rf) , t pd(ff) , t pd(fr) ) where edges are applicable for a particular combinatorial cell fanout = 4 t pd t pd t pd 50% vcc vcc vcc 50% gnd a, b, c 50% 50% 50% (rr) (rf) gnd out out gnd 50% (ff) (fr) t pd t pd
igloo dc and switching characteristics 2-100 revision 23 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-169 ? combinatorial cell propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v combinatorial cell equation parameter std. units inv y =!a t pd 0.80 ns and2 y = a b t pd 0.84 ns nand2 y =!(a b) t pd 0.90 ns or2 y = a + b t pd 1.19 ns nor2 y = !(a + b) t pd 1.10 ns xor2 y = a ?? bt pd 1.37 ns maj3 y = maj(a, b, c) t pd 1.33 ns xor3 y = a ? b ?? ct pd 1.79 ns mux2 y = a !s + b s t pd 1.48 ns and3 y = a b c t pd 1.21 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-170 ? combinatorial cell propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v combinatorial cell equation parameter std. units inv y = !a t pd 1.34 ns and2 y = a b t pd 1.43 ns nand2 y = !(a b) t pd 1.59 ns or2 y = a + b t pd 2.30 ns nor2 y = !(a + b) t pd 2.07 ns xor2 y = a ?? bt pd 2.46 ns maj3 y = maj(a, b, c) t pd 2.46 ns xor3 y = a ? b ?? ct pd 3.12 ns mux2 y = a !s + b s t pd 2.83 ns and3 y = a b c t pd 2.28 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-101 versatile specifications as a sequential module the igloo library offers a wide vari ety of sequential cells, including flip-flops and latches. each has a data input and optional enable, clear, or preset. in this section, timing characteristics are presented for a representative sample from the libra ry. for more details, refer to the igloo, fusion, and proasic3 macro library guide . figure 2-27 ? sample of sequential cells dq dfn1 data clk out d q dfn1c1 data clk out clr dq dfi1e1p1 data clk out en pre d q dfn1e1 data clk out en
igloo dc and switching characteristics 2-102 revision 23 timing characteristics 1.5 v dc core voltage figure 2-28 ? timing model and waveforms pre clr out clk data en t sue 50% 50% t sud t hd 50% 50% t clkq 0 t he t recpre t rempre t recclr t remclr t wclr t wpre t pre2q t clr2q t ckmpwh t ckmpwl 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% table 2-171 ? register delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description std. units t clkq clock-to-q of the core register 0.89 ns t sud data setup time for the core register 0.81 ns t hd data hold time for the core register 0.00 ns t sue enable setup time for the core register 0.73 ns t he enable hold time for the core register 0.00 ns t clr2q asynchronous clear-to-q of the core register 0.60 ns t pre2q asynchronous preset-to-q of the core register 0.62 ns t remclr asynchronous clear removal time for the core register 0.00 ns t recclr asynchronous clear recovery time for the core register 0.24 ns t rempre asynchronous preset removal time for the core register 0.00 ns t recpre asynchronous preset recovery time for the core register 0.23 ns t wclr asynchronous clear minimum pulse width for the core register 0.30 ns t wpre asynchronous preset minimum pulse width for the core register 0.30 ns t ckmpwh clock minimum pulse width high for the core register 0.56 ns t ckmpwl clock minimum pulse width low for the core register 0.56 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-103 1.2 v dc core voltage table 2-172 ? register delays commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v parameter description std. units t clkq clock-to-q of the core register 1.61 ns t sud data setup time for the core register 1.17 ns t hd data hold time for the core register 0.00 ns t sue enable setup time for the core register 1.29 ns t he enable hold time for the core register 0.00 ns t clr2q asynchronous clear-to-q of the core register 0.87 ns t pre2q asynchronous preset-to-q of the core register 0.89 ns t remclr asynchronous clear removal time for the core register 0.00 ns t recclr asynchronous clear recovery time for the core register 0.24 ns t rempre asynchronous preset removal time for the core register 0.00 ns t recpre asynchronous preset recovery time for the core register 0.24 ns t wclr asynchronous clear minimum pulse width for the core register 0.46 ns t wpre asynchronous preset minimum pulse width for the core register 0.46 ns t ckmpwh clock minimum pulse width high for the core register 0.95 ns t ckmpwl clock minimum pulse width low for the core register 0.95 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values.
igloo dc and switching characteristics 2-104 revision 23 global resource characteristics agl250 clock tree topology clock delays are device-specific. figure 2-29 is an example of a global tree used for clock routing. the global tree presented in figure 2-29 is driven by a ccc located on th e west side of the agl250 device. it is used to drive all d-flip-flops in the device. figure 2-29 ? example of global tree use in an agl250 device fo r clock routing central global rib versatile rows global spine ccc
igloo low power flash fpgas revision 23 2-105 global tree timing characteristics global clock delays include the central rib delay, the spine delay, and the row delay. delays do not include i/o input buffer clock delays, as these are i/o standard?dependent, and the clock may be driven and conditioned internally by the ccc module. for more details on clock conditioning capabilities, refer to the "clock conditioning circuits" section on page 2-113 . table 2-173 to table 2-188 on page 2-112 present minimum and maximum global clock delays within each device. minimum and maximum delays are measured with minimum and maximum loading. timing characteristics 1.5 v dc core voltage table 2-173 ? agl015 global resource commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 1.21 1.42 ns t rckh input high delay for global clock 1.23 1.49 ns t rckmpwh minimum pulse width high for global clock 1.18 ns t rckmpwl minimum pulse width low for global clock 1.15 ns t rcksw maximum skew for global clock 0.27 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-174 ? agl030 global resource commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 1.21 1.42 ns t rckh input high delay for global clock 1.23 1.49 ns t rckmpwh minimum pulse width high for global clock 1.18 ns t rckmpwl minimum pulse width low for global clock 1.15 ns t rcksw maximum skew for global clock 0.27 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo dc and switching characteristics 2-106 revision 23 table 2-175 ? agl060 global resource commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 1.33 1.55 ns t rckh input high delay for global clock 1.35 1.62 ns t rckmpwh minimum pulse width high for global clock 1.18 ns t rckmpwl minimum pulse width low for global clock 1.15 ns t rcksw maximum skew for global clock 0.27 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-176 ? agl125 global resource commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 1.36 1.71 ns t rckh input high delay for global clock 1.39 1.82 ns t rckmpwh minimum pulse width high for global clock 1.18 ns t rckmpwl minimum pulse width low for global clock 1.15 ns t rcksw maximum skew for global clock 0.43 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-107 table 2-177 ? agl250 global resource commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 1.39 1.73 ns t rckh input high delay for global clock 1.41 1.84 ns t rckmpwh minimum pulse width high for global clock 1.18 ns t rckmpwl minimum pulse width low for global clock 1.15 ns t rcksw maximum skew for global clock 0.43 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-178 ? agl400 global resource commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 1.45 1.79 ns t rckh input high delay for global clock 1.48 1.91 ns t rckmpwh minimum pulse width high for global clock 1.18 ns t rckmpwl minimum pulse width low for global clock 1.15 ns t rcksw maximum skew for global clock 0.43 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage-supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo dc and switching characteristics 2-108 revision 23 table 2-179 ? agl600 global resource commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 1.48 1.82 ns t rckh input high delay for global clock 1.52 1.94 ns t rckmpwh minimum pulse width high for global clock 1.18 ns t rckmpwl minimum pulse width low for global clock 1.15 ns t rcksw maximum skew for global clock 0.42 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-180 ? agl1000 global resource commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 1.55 1.89 ns t rckh input high delay for global clock 1.60 2.02 ns t rckmpwh minimum pulse width high for global clock 1.18 ns t rckmpwl minimum pulse width low for global clock 1.15 ns t rcksw maximum skew for global clock 0.42 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-109 1.2 v dc core voltage table 2-181 ? agl015 global resource commercial-case conditions: t j = 70c, vcc = 1.14 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 1.79 2.09 ns t rckh input high delay for global clock 1.87 2.26 ns t rckmpwh minimum pulse width high for global clock 1.40 ns t rckmpwl minimum pulse width low for global clock 1.65 ns t rcksw maximum skew for global clock 0.39 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-182 ? agl030 global resource commercial-case conditions: t j = 70c, vcc = 1.14 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 1.80 2.09 ns t rckh input high delay for global clock 1.88 2.27 ns t rckmpwh minimum pulse width high for global clock 1.40 ns t rckmpwl minimum pulse width low for global clock 1.65 ns t rcksw maximum skew for global clock 0.39 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo dc and switching characteristics 2-110 revision 23 table 2-183 ? agl060 global resource commercial-case conditions: t j = 70c, vcc = 1.14 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 2.04 2.33 ns t rckh input high delay for global clock 2.10 2.51 ns t rckmpwh minimum pulse width high for global clock 1.40 ns t rckmpwl minimum pulse width low for global clock 1.65 ns t rcksw maximum skew for global clock 0.40 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-184 ? agl125 global resource commercial-case conditions: t j = 70c, vcc = 1.14 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 2.08 2.54 ns t rckh input high delay for global clock 2.15 2.77 ns t rckmpwh minimum pulse width high for global clock 1.40 ns t rckmpwl minimum pulse width low for global clock 1.65 ns t rcksw maximum skew for global clock 0.62 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-111 table 2-185 ? agl250 global resource commercial-case conditions: t j = 70c, vcc = 1.14 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 2.11 2.57 ns t rckh input high delay for global clock 2.19 2.81 ns t rckmpwh minimum pulse width high for global clock 1.40 ns t rckmpwl minimum pulse width low for global clock 1.65 ns t rcksw maximum skew for global clock 0.62 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-186 ? agl400 global resource commercial-case conditions: t j = 70c, vcc = 1.14 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 2.18 2.64 ns t rckh input high delay for global clock 2.27 2.89 ns t rckmpwh minimum pulse width high for global clock 1.40 ns t rckmpwl minimum pulse width low for global clock 1.65 ns t rcksw maximum skew for global clock 0.62 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo dc and switching characteristics 2-112 revision 23 table 2-187 ? agl600 global resource commercial-case conditions: t j = 70c, vcc = 1.14 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 2.22 2.67 ns t rckh input high delay for global clock 2.32 2.93 ns t rckmpwh minimum pulse width high for global clock 1.40 ns t rckmpwl minimum pulse width low for global clock 1.65 ns t rcksw maximum skew for global clock 0.61 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-188 ? agl1000 global resource commercial-case conditions: t j = 70c, vcc = 1.14 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 2.31 2.76 ns t rckh input high delay for global clock 2.42 3.03 ns t rckmpwh minimum pulse width high for global clock 1.40 ns t rckmpwl minimum pulse width low for global clock 1.65 ns t rcksw maximum skew for global clock 0.61 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-113 clock conditioning circuits ccc electrical specifications timing characteristics table 2-189 ? igloo ccc/pll specification for igloo v2 or v5 devices, 1.5 v dc core supply voltage parameter min. typ. max. units clock conditioning circuitry input frequency f in_ccc 1.5 250 mhz clock conditioning circuitry output frequency f out_ccc 0.75 250 mhz delay increments in programmable delay blocks 1, 2 360 3 ps number of programmable values in each programmable delay block 32 serial clock (sclk) for dynamic pll 4, 5 100 ns input cycle-to-cycle jitter (peak magnitude) 1 ns acquisition time lockcontrol = 0 300 s lockcontrol = 1 6.0 ms tracking jitter 6 lockcontrol = 0 2.5 ns lockcontrol = 1 1.5 ns output duty cycle 48.5 51.5 % delay range in block: programmable delay 1 1, 2 1.25 15.65 ns delay range in block: programmable delay 2 1, 2 0.469 15.65 ns delay range in block: fixed delay 1, 2 3.5 ns ccc output peak-to-peak period jitter f ccc_out maximum peak-to-peak jitter data 7 sso ? 4 8 sso ? 8 8 sso ? 16 8 0.75 mhz to 50 mhz 0.60% 0.80% 1.20% 50 mhz to 160 mhz 4.00% 6.00% 12.00% notes: 1. this delay is a function of voltage and temperature. see table 2-6 on page 2-7 and table 2-7 on page 2-7 for deratings. 2. t j = 25c, v cc = 1.5 v 3. when the ccc/pll core is generated by microsemi core generator software, not al l delay values of the specified delay increments are available. refer to the libero soc online help associated with the core for more information. 4. the agl030 device does not support a pll. 5. maximum value obtained for a std. speed grade device in worst-case commercial conditi ons. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. 6. tracking jitter is defined as the variat ion in clock edge position of pll outputs with reference to the pll input clock edge. tracking jitter does not measure the variation in pll output period, which is covered by the period jitter parameter. 7. measurements done with lvttl 3.3 v, 8 ma i/o drive strength, and high slew rate. vcc/vccpll = 1.14 v, vq/pq/tq type of packages, 20 pf load. 8. simultaneously switching outputs (ssos) are outputs that are synchronous to a single cl ock domain and have clock-to-out times that are within 200 ps of each other. switching i/os are placed outside of the pll bank. refer to the "simultaneously switching outputs (ssos) and printed circuit board layout" section in the igloo fpga fabric user?s guide .
igloo dc and switching characteristics 2-114 revision 23 table 2-190 ? igloo ccc/pll specification for igloo v2 devices, 1.2 v dc core supply voltage parameter min. typ. max. units clock conditioning circuitry input frequency f in_ccc 1.5 160 mhz clock conditioning circuitry output frequency f out_ccc 0.75 160 mhz delay increments in programmable delay blocks 1, 2 580 3 ps number of programmable values in each programmable delay block 32 serial clock (sclk) for dynamic pll 4,5 60 ns input cycle-to-cycle jitter (peak magnitude) 0.25 ns acquisition time lockcontrol = 0 300 s lockcontrol = 1 6.0 ms tracking jitter 6 lockcontrol = 0 4 ns lockcontrol = 1 3 ns output duty cycle 48.5 51.5 % delay range in block: programmable delay 1 1,2 2.3 20.86 ns delay range in block: programmable delay 2 1,2 0.863 20.86 ns delay range in block: fixed delay 1, 2, 5 5.7 ns ccc output peak-to-peak period jitter f ccc_out maximum peak-to-peak jitter data 7,8 sso ? 4 9 sso ? 8 9 sso ? 16 9 0.75 mhz to 50 mhz 1.20% 2.00% 3.00% 50 mhz to 160 mhz 5.00% 7.00% 15.00% notes: 1. this delay is a function of voltage and temperature. see table 2-6 on page 2-7 and table 2-7 on page 2-7 for deratings. 2. t j = 25c, v cc = 1.2 v 3. when the ccc/pll core is generated by microsemi core genera tor software, not all delay values of the specified delay increments are available. refer to the libero soc online help associated with the core for more information. 4. maximum value obtained for a std. speed grade device in worst-case commercial condi tions. for spec ific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. 5. the agl030 device does not support a pll. 6. tracking jitter is defined as the variat ion in clock edge position of pll outputs with reference to the pll input clock edge. tracking jitter does not measure the variation in pll output period, which is covered by the period jitter parameter. 7. vco output jitter is calculated as a percentage of the vco frequ ency. the jitter (in ps) can be calculated by multiplying the vco period by the per cent jitter. the vco jitter (in ps) applies to ccc_out regardless of the output divider settings. for example , if the jitter on vco is 300 ps, the jitter on ccc_out is al so 300 ps, regardless of the output divider settings. 8. measurements done with lvttl 3.3 v, 8 ma i/o drive strength , and high slew rate. vcc/vccpll = 1.14 v, vq/pq/tq type of packages, 20 pf load. 9. sso are outputs that are synchronous to a single clock domain and have clock-to-out times that are within 200 ps of each other. switching i/os are placed outside of the pll bank. refer to the "simultaneously switching outputs (ssos) and printed circuit board layout" section in the igloo fpga fabric user?s guide . 10. for definitions of type 1 and type 2, refer to the pll block diagram in the "clock conditioning circuits in igloo and proasic3 devices" chapter of the igloo fpga fabric user?s guide .
igloo low power flash fpgas revision 23 2-115 note: peak-to-peak jitter meas urements are defined by t peak-to-peak = t period_max ? t period_min . figure 2-30 ? peak-to-peak jitter definition t period_max t period_min output signal
igloo dc and switching characteristics 2-116 revision 23 embedded sram and fifo characteristics sram figure 2-31 ? ram models addra11 douta8 douta7 douta0 doutb8 doutb7 doutb0 addra10 addra0 dina8 dina7 dina0 widtha1 widtha0 pipea wmodea blka wena clka addrb11 addrb10 addrb0 dinb8 dinb7 dinb0 widthb1 widthb0 pipeb wmodeb blkb wenb clkb ram4k9 raddr8 rd17 raddr7 rd16 raddr0 rd0 wd17 wd16 wd0 ww1 ww0 rw1 rw0 pipe ren rclk ram512x18 waddr8 waddr7 waddr0 wen wclk reset reset
igloo low power flash fpgas revision 23 2-117 timing waveforms figure 2-32 ? ram read for pass-through output. applicable to both ram4k9 and ram512x18. figure 2-33 ? ram read for pipelined output. appl icable to both ram4k9 and ram512x18. clk [r|w]addr blk wen dout|rd a 0 a 1 a 2 d 0 d 1 d 2 t cyc t ckh t ckl t as t ah t bks t ens t enh t doh1 t bkh d n t ckq1 clk [r|w]addr blk wen dout|rd a 0 a 1 a 2 d 0 d 1 t cyc t ckh t ckl t as t ah t bks t ens t enh t doh2 t ckq2 t bkh d n
igloo dc and switching characteristics 2-118 revision 23 figure 2-34 ? ram write, output retained. applic able to both ram4k9 and ram512x18. figure 2-35 ? ram write, output as write data (wmode = 1). applicable to ram4k9 only. t cyc t ckh t ckl a 0 a 1 a 2 di 0 di 1 t as t ah t bks t ens t enh t ds t dh clk blk wen [r|w]addr din|wd d n dout|rd t bkh d 2 t cyc t ckh t ckl a 0 a 1 a 2 di 0 di 1 t as t ah t bks t ens t ds t dh clk blk wen [r|w]addr din t bkh dout (pass-through) di 1 d n di 0 dout (pipelined) di 0 di 1 d n di 2
igloo low power flash fpgas revision 23 2-119 figure 2-36 ? ram reset. applicable to both ram4k9 and ram512x18. clk reset dout|rd d n t cyc t ckh t ckl t rstbq d m
igloo dc and switching characteristics 2-120 revision 23 timing characteristics 1.5 v dc core voltage table 2-191 ? ram4k9 commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description std. units t as address setup time 0.83 ns t ah address hold time 0.16 ns t ens ren, wen setup time 0.81 ns t enh ren, wen hold time 0.16 ns t bks blk setup time 1.65 ns t bkh blk hold time 0.16 ns t ds input data (din) setup time 0.71 ns t dh input data (din) hold time 0.36 ns t ckq1 clock high to new data valid on dout (output retained, wmode = 0) 3.53 ns clock high to new data valid on dout (flow-through, wmode = 1) 3.06 ns t ckq2 clock high to new data valid on dout (pipelined) 1.81 ns t c2cwwl 1 address collision clk-to-clk delay for reliable wr ite after write on same address ? applicable to closing edge 0.23 ns t c2crwl 1 address collision clk-to-clk delay for reliable read access after write on same address ? applicable to opening edge 0.35 ns t c2cwrh 1 address collision clk-to-clk delay for reliable write access after read on same address ? applicable to opening edge 0.41 ns t rstbq reset low to data out low on dout (flow-through) 2.06 ns reset low to data out low on dout (pipelined) 2.06 ns t remrstb reset removal 0.61 ns t recrstb reset recovery 3.21 ns t mpwrstb reset minimum pulse width 0.68 ns t cyc clock cycle time 6.24 ns f max maximum frequency 160 mhz notes: 1. for more information, refer to the application note simultaneous read-write operations in dual-port sram for flash- based csocs and fpgas . 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-121 table 2-192 ? ram512x18 commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description std. units t as address setup time 0.83 ns t ah address hold time 0.16 ns t ens ren, wen setup time 0.73 ns t enh ren, wen hold time 0.08 ns t ds input data (wd) setup time 0.71 ns t dh input data (wd) hold time 0.36 ns t ckq1 clock high to new data valid on rd (output retained) 4.21 ns t ckq2 clock high to new data valid on rd (pipelined) 1.71 ns t c2crwh 1 address collision clk-to-clk delay for reliable read access after write on same address - applicable to opening edge 0.35 ns t c2cwrh 1 address collision clk-to-clk delay for reliable write access after read on same address - applicable to opening edge 0.42 ns t rstbq reset low to data out low on rd (flow-th rough) 2.06 ns reset low to data out low on rd (pipelined) 2.06 ns t remrstb reset removal 0.61 ns t recrstb reset recovery 3.21 ns t mpwrstb reset minimum pulse width 0.68 ns t cyc clock cycle time 6.24 ns f max maximum frequency 160 mhz notes: 1. for more information, refer to the application note simultaneous read-write operations in dual-port sram for flash- based csocs and fpgas . 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo dc and switching characteristics 2-122 revision 23 1.2 v dc core voltage table 2-193 ? ram4k9 commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v parameter description std. units t as address setup time 1.53 ns t ah address hold time 0.29 ns t ens ren wen setup time 1.50 ns t enh ren, wen hold time 0.29 ns t bks blk setup time 3.05 ns t bkh blk hold time 0.29 ns t ds input data (din) setup time 1.33 ns t dh input data (din) hold time 0.66 ns t ckq1 clock high to new data valid on dout (output retained, wmode = 0) 6.61 ns clock high to new data valid on dout (flow-through, wmode = 1) 5.72 ns t ckq2 clock high to new data valid on dout (pipelined) 3.38 ns t c2cwwl 1 address collision clk-to-clk delay for re liable write after write on same address ? applicable to closing edge 0.30 ns t c2crwh 1 address collision clk-to-clk delay for reliable read access after write on same address ? applicable to opening edge 0.89 ns t c2cwrh 1 address collision clk-to-clk delay for reliable write access after read on same address ? applicable to opening edge 1.01 ns t rstbq reset low to data out low on dout (flow-through) 3.86 ns reset low to data out low on dout (pipelined) 3.86 ns t remrstb reset removal 1.12 ns t recrstb reset recovery 5.93 ns t mpwrstb reset minimum pulse width 1.18 ns t cyc clock cycle time 10.90 ns f max maximum frequency 92 mhz notes: 1. for more information, refer to the application note simultaneous read-write operations in dual-port sram for flash- based csocs and fpgas . 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-123 table 2-194 ? ram512x18 commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v parameter description std. units t as address setup time 1.53 ns t ah address hold time 0.29 ns t ens ren, wen setup time 1.36 ns t enh ren, wen hold time 0.15 ns t ds input data (wd) setup time 1.33 ns t dh input data (wd) hold time 0.66 ns t ckq1 clock high to new data valid on rd (output retained) 7.88 ns t ckq2 clock high to new data valid on rd (pipelined) 3.20 ns t c2crwh 1 address collision clk-to-clk delay for reliable read access after write on same address ? applicable to opening edge 0.87 ns t c2cwrh 1 address collision clk-to-clk delay for reliable write access after read on same address ? applicable to opening edge 1.04 ns t rstbq reset low to data out low on rd (flow through) 3.86 ns reset low to data out low on rd (pipelined) 3.86 ns t remrstb reset removal 1.12 ns t recrstb reset recovery 5.93 ns t mpwrstb reset minimum pulse width 1.18 ns t cyc clock cycle time 10.90 ns f max maximum frequency 92 mhz notes: 1. for more information, refer to the application note simultaneous read-write operations in dual-port sram for flash- based csocs and fpgas . 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo dc and switching characteristics 2-124 revision 23 fifo figure 2-37 ? fifo model fifo4k18 rw2 rd17 rw1 rd16 rw0 ww2 ww1 ww0 rd0 estop fstop full afull empty afval11 aempty afval10 afval0 aeval11 aeval10 aeval0 ren rblk rclk wen wblk wclk rpipe wd17 wd16 wd0 reset
igloo low power flash fpgas revision 23 2-125 timing waveforms figure 2-38 ? fifo read figure 2-39 ? fifo write t ens t enh t ckq1 t ckq2 t cyc d 0 d 1 d n d n d 0 d 2 d 1 t bks t bkh rclk rblk ren rd (flow-through) rd (pipelined) wclk wen wd t ens t enh t ds t dh t cyc di 0 di 1 t bkh t bks wblk
igloo dc and switching characteristics 2-126 revision 23 figure 2-40 ? fifo reset figure 2-41 ? fifo empty flag and aempty flag assertion match (a 0 ) t mpwrstb t rstfg t rstck t rstaf rclk/ wclk reset empty aempty wa/ra (address counter) t rstfg t rstaf full afull rclk no match no match dist = aef_th match (empty) t ckaf t rckef empty aempty t cyc wa/ra (address counter)
igloo low power flash fpgas revision 23 2-127 figure 2-42 ? fifo full flag and afull flag assertion figure 2-43 ? fifo empty flag and aempty flag deassertion figure 2-44 ? fifo full flag and afull flag deassertion no match no match dist = aff_th match (full) t ckaf t wckff t cyc wclk full afull wa/ra (address counter) wclk wa/ra (address counter) match (empty) no match no match no match dist = aef_th + 1 no match rclk empty 1st rising edge after 1st write 2nd rising edge after 1st write t rckef t ckaf aempty dist = aff_th ? 1 match (full) no match no match no match no match t wckf t ckaf 1st rising edge after 1st read 1st rising edge after 2nd read rclk wa/ra (address counter) wclk full afull
igloo dc and switching characteristics 2-128 revision 23 timing characteristics 1.5 v dc core voltage table 2-195 ? fifo worst commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description std. units t ens ren, wen setup time 1.99 ns t enh ren, wen hold time 0.16 ns t bks blk setup time 0.30 ns t bkh blk hold time 0.00 ns t ds input data (wd) setup time 0.76 ns t dh input data (wd) hold time 0.25 ns t ckq1 clock high to new data valid on rd (flow-through) 3.33 ns t ckq2 clock high to new data valid on rd (pipelined) 1.80 ns t rckef rclk high to empty flag valid 3.53 ns t wckff wclk high to full flag valid 3.35 ns t ckaf clock high to almost empty/full flag valid 12.85 ns t rstfg reset low to empty/full flag valid 3.48 ns t rstaf reset low to almost empty/full flag valid 12.72 ns t rstbq reset low to data out low on rd (flow-through) 2.02 ns reset low to data out low on rd (pipelined) 2.02 ns t remrstb reset removal 0.61 ns t recrstb reset recovery 3.21 ns t mpwrstb reset minimum pulse width 0.68 ns t cyc clock cycle time 6.24 ns f max maximum frequency for fifo 160 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo low power flash fpgas revision 23 2-129 1.2 v dc core voltage table 2-196 ? fifo worst commercial-case conditions: t j = 70c, vcc = 1.14 v parameter description std. units t ens ren, wen setup time 4.13 ns t enh ren, wen hold time 0.31 ns t bks blk setup time 0.47 ns t bkh blk hold time 0.00 ns t ds input data (wd) setup time 1.56 ns t dh input data (wd) hold time 0.49 ns t ckq1 clock high to new data valid on rd (flow-through) 6.80 ns t ckq2 clock high to new data valid on rd (pipelined) 3.62 ns t rckef rclk high to empty flag valid 7.23 ns t wckff wclk high to full flag valid 6.85 ns t ckaf clock high to almost empty/full flag valid 26.61 ns t rstfg reset low to empty/full flag valid 7.12 ns t rstaf reset low to almost empty/full flag valid 26.33 ns t rstbq reset low to data out low on rd (flow-through) 4.09 ns reset low to data out low on rd (pipelined) 4.09 ns t remrstb reset removal 1.23 ns t recrstb reset recovery 6.58 ns t mpwrstb reset minimum pulse width 1.18 ns t cyc clock cycle time 10.90 ns f max maximum frequency for fifo 92 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-7 for derating values.
embedded flashrom characteristics timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage figure 2-45 ? timing diagram a 0 a 1 t su t hold t su t hold t su t hold t ckq2 t ckq2 t ckq2 clk a ddress data d 0 d 0 d 1 table 2-197 ? embedded flashrom access time worst commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description std. units t su address setup time 0.57 ns t hold address hold time 0.00 ns t ck2q clock to out 34.14 ns f max maximum clock frequency 15 mhz table 2-198 ? embedded flashrom access time worst commercial-case conditions: t j = 70c, vcc = 1.14 v parameter description std. units t su address setup time 0.59 ns t hold address hold time 0.00 ns t ck2q clock to out 52.90 ns f max maximum clock frequency 10 mhz
igloo low power flash fpgas revision 23 2-131 jtag 1532 characteristics jtag timing delays do not include jtag i/os. to obtai n complete jtag timing, add i/o buffer delays to the corresponding standard selected; refer to the i/o timing characteristics in the "user i/o characteristics" section on page 2-20 for more details. timing characteristics table 2-199 ? jtag 1532 commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description std. units t disu test data input setup time 1.00 ns t dihd test data input hold time 2.00 ns t tmssu test mode select setup time 1.00 ns t tmdhd test mode select hold time 2.00 ns t tck2q clock to q (data out) 8.00 ns t rstb2q reset to q (data out) 25.00 ns f tckmax tck maximum frequency 15 mhz t trstrem resetb removal time 0.58 ns t trstrec resetb recovery time 0.00 ns t trstmpw resetb minimum pulse tbd ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values. table 2-200 ? jtag 1532 commercial-case conditions: t j = 70c, worst-case vcc = 1.14 v parameter description std. units t disu test data input setup time 1.50 ns t dihd test data input hold time 3.00 ns t tmssu test mode select setup time 1.50 ns t tmdhd test mode select hold time 3.00 ns t tck2q clock to q (data out) 11.00 ns t rstb2q reset to q (data out) 30.00 ns f tckmax tck maximum frequency 9.00 mhz t trstrem resetb removal time 1.18 ns t trstrec resetb recovery time 0.00 ns t trstmpw resetb minimum pulse tbd ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-7 for derating values.
igloo dc and switching characteristics 2-132 revision 23
revision 23 3-1 3 ? pin descriptions supply pins gnd ground ground supply voltage to the core, i/o outputs, and i/o logic. gndq ground (quiet) quiet ground supply voltage to input buffers of i/o banks. within the package, the gndq plane is decoupled from the simultaneous switching noise orig inated from the output buffer ground domain. this minimizes the noise transfer within the package and im proves input signal integrity. gndq must always be connected to gnd on the board. vcc core supply voltage supply voltage to the fpga core, nominally 1.5 v fo r igloo v5 devices, and 1.2 v or 1.5 v for igloo v2 devices. vcc is required for powering the jtag st ate machine in addition to vjtag. even when a device is in bypass mode in a jtag chain of interconnected devices, both vcc and vjtag must remain powered to allow jtag signals to pass through the device. for igloo v2 devices, vcc can be s witched dynamically from 1.2 v to 1.5 v or vice versa. this allows in-system programming (isp) when vcc is at 1.5 v and the benefit of low power operation when vcc is at 1.2 v. vccibx i/o supply voltage supply voltage to the bank's i/o output buffers and i/o logic. bx is the i/o bank number. there are up to eight i/o banks on igloo devices plus a dedicated vjtag bank. each bank can have a separate vcci connection. all i/os in a bank will run off the same vccibx supply. vcci can be 1.2 v, 1.5 v, 1.8 v, 2.5 v, or 3.3 v, nominal voltage. unused i/o banks shou ld have their corresponding vcci pins tied to gnd. vmvx i/o supply voltage (quiet) quiet supply voltage to the input buffers of each i/o bank. x is the bank number. within the package, the vmv plane biases the input stage of the i/os in the i/o banks. this minimizes the noise transfer within the package and improves input signal integrity. ea ch bank must have at least one vmv connection, and no vmv should be left unconnected. all i/os in a bank run off the same vmvx supply. vmv is used to provide a quiet supply voltage to the input buffer s of each i/o bank. vmvx can be 1.2 v, 1.5 v, 1.8 v, 2.5 v, or 3.3 v, nominal voltage. unused i/o banks shou ld have their corresponding vmv pins tied to gnd. vmv and vcci should be at the same voltage within a given i/o bank. used vmv pins must be connected to the corresponding vcci pins of the same bank (i.e., vmv0 to vccib0, vmv1 to vccib1, etc.). vccpla/b/c/d/e/f pll supply voltage supply voltage to analog pll, nominally 1.5 v or 1.2 v. ? 1.5 v for igloo v5 devices ? 1.2 v or 1.5 v for igloo v2 devices when the plls are not used, the microsemi designer place-and-route tool automatically disables the unused plls to lower power consumption. the user should tie unused vccplx and vcomplx pins to ground. microsemi recommends tying vccplx to vcc and using proper filtering circuits to decouple vcc noise from the plls. refer to the pl l power supply decoupling section of the " clock conditioning circuits in low power flash devices and mixed signal fpgas" chapter of the igloo fpga fabric user?s guide for a complete board solution for the pll analog power supply and ground. ? there is one vccplf pin on igloo devices. vcompla/b/c/d/e/f pll ground ground to analog pll power supplies. when the plls are not used, the microsemi designer place-and- route tool automatically disables the unused plls to lower power consumption. the user should tie unused vccplx and vcomplx pins to ground. there is one vcomplf pin on igloo devices.
pin descriptions 3-2 revision 23 vjtag jtag supply voltage low power flash devices have a separate bank for the dedicated jtag pins. the jtag pins can be run at any voltage from 1.5 v to 3.3 v (nominal). isol ating the jtag power supply in a separate i/o bank gives greater flexibility in supply selection and si mplifies power supply and pcb design. if the jtag interface is neither used nor planned for use, the vj tag pin together with the trst pin could be tied to gnd. it should be noted that vcc is required to be powered for jtag operation; vjtag alone is insufficient. if a device is in a jtag chain of in terconnected boards, the board containing the device can be powered down, provided both vjtag and vcc to th e part remain powered; otherwise, jtag signals will not be able to transition the device, even in bypass mode. microsemi recommends that vpump and vjtag pow er supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail. vpump programming supply voltage igloo devices support single-volt age isp of the configuration flash and flashrom. for programming, vpump should be 3.3 v nominal. during normal device operation, vpump can be left floating or can be tied (pulled up) to any voltage between 0 v and the vpump maximum. programming power supply voltage (vpump) range is listed in the datasheet. when the vpump pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry. for proper programming, 0.01 f and 0.33 f capacitors (both rated at 16 v) are to be connected in parallel across vpump and gnd, and positioned as close to the fpga pins as possible. microsemi recommends that vpump and vjtag pow er supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail. user pins i/o user input/output the i/o pin functions as an input, output, tristate, or bi directional buffer. input and output signal levels are compatible with the i/o standard selected. during programming, i/os become tristated and weakly pulled up to vcci. with vcci, vmv, and vcc supplies continuously powered up, when the device tr ansitions from programming to operating mode, the i/os are instantly configured to the desired user configuration. unused i/os are configured as follows: ? output buffer is disabled (with tristate value of high impedance) ? input buffer is disabled (with tristate value of high impedance) ? weak pull-up is programmed gl globals gl i/os have access to certain clock conditioning circuitry (and the pll) and/or have direct access to the global network (spines). additionally, the global i/os can be used as regular i/os, since they have identical capabilities. unused gl pins are configured as inputs with pull-up resistors. see more detailed descriptions of global i/o connectivity in the "clock conditioning circuits in low power flash devices and mixed signal fpgas" chapter of the igloo fpga fabric user?s guide . all inputs labeled gc/gf are direct inputs into the quadrant clocks. for example, if gaa0 is used for an input, gaa1 and gaa2 are no longer available for input to the quadrant globals. all inputs labeled gc/gf are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. the inputs to the global network are multiplexed, and only one input can be used as a global input. refer to the "i/o structures in iglo o and proasic3 devices" chapter of the igloo fpga fabric user?s guide for an explanation of the naming of global pins. ff flash*freeze mode activation pin flash*freeze mode is available on igloo devices. t he ff pin is a dedicated input pin used to enter and exit flash*freeze mode. the ff pin is active low, has the same characteristics as a single-ended i/o, and must meet the maximum rise and fall times. when flash*freeze mode is not used in the design, the ff pin is available as a regular i/o.
igloo low power flash fpgas revision 23 3-3 when flash*freeze mode is used, the ff pin must not be left floating to avoid accidentally entering flash*freeze mode. while in flash*freeze mode, the flash*freeze pin should be constantly asserted. the flash*freeze pin can be used with any single- ended i/o standard supported by the i/o bank in which the pin is located, and input signal levels compatible with the i/o standard selected. the ff pin should be treated as a sensitive asynchronous signa l. when defining pin placement and board layout, simultaneously switching outputs (ssos) and their effects on sensitive asynchronous pins must be considered. unused ff or i/o pins are tristated with weak pul l-up. this default config uration applies to both flash*freeze mode and normal operation mo de. no user intervention is required. table 3-1 shows the flash*freeze pin location on the available packages for igloo a devices. the flash*freeze pin location is independ ent of device, allowing migratio n to larger or smaller igloo devices while maintaining the same pin location on the board. refer to the " flash*freeze technology and low power modes" chapter of the igloo fpga fabric user?s guide for more information on i/o states during flash*freeze mode. table 3-1 ? flash*freeze pin location in igloo family packages (device-independent) igloo packages flash*freeze pin cs81/uc81 h2 cs121 j5 cs196 p3 cs281 w2 qn48 14 qn68 18 qn132 b12 vq100 27 fg144 l3 fg256 t3 fg484 w6
pin descriptions 3-4 revision 23 jtag pins igloo devices have a separate bank for the dedica ted jtag pins. the jtag pins can be run at any voltage from 1.5 v to 3.3 v (nominal). vcc must also be powered for the jtag state machine to operate, even if the device is in bypass mode; vjtag alone is insufficient. both vjtag and vcc to the part must be supplied to allow jtag signals to transition the device. isolating the jtag power supply in a separate i/o bank gives greater flexibility in supply selection and simplifies power supply and pcb design. if the jtag interface is neither used nor planned for use, the vjtag pin together with the trst pin could be tied to gnd. tck test clock test clock input for jtag boundary scan, isp, and uj tag. the tck pin does not have an internal pull- up/-down resistor. if jtag is not used, microsemi recommends tying off tck to gnd through a resistor placed close to the fpga pin. this prevents jtag operation in case tms enters an undesired state. note that to operate at all vjtag voltages, 500 ? to 1 k ? will satisfy the requirements. refer to table 3-2 for more in formation. tdi test data input serial input for jtag boundary scan, isp, and ujtag us age. there is an internal weak pull-up resistor on the tdi pin. tdo test data output serial output for jtag boundary scan, isp, and ujtag usage. tms test mode select the tms pin controls the use of the ieee 1532 boundar y scan pins (tck, tdi, tdo, trst). there is an internal weak pull-up resistor on the tms pin. trst boundary scan reset pin the trst pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. there is an internal weak pull-up resistor on the trst pin. if jtag is not used, an external pull- down resistor could be included to ensure the test access port (tap) is held in reset mode. the resistor values must be chosen from ta b l e 3 - 2 and must satisfy the parallel re sistance value requirement. the values in ta b l e 3 - 2 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a jtag chain. table 3-2 ? recommended tie-off values for the tck and trst pins vjtag tie-off resistance 1,2 vjtag at 3.3 v 200 ? to 1 k ? vjtag at 2.5 v 200 ? to 1 k ? vjtag at 1.8 v 500 ? to 1 k ? vjtag at 1.5 v 500 ? to 1 k ? notes: 1. the tck pin can be pulled-up or pulled-down. 2. the trst pin is pulled-down. 3. equivalent parallel resistance if more than one device is on the jtag chain table 3-3 ? trst and tck pull-down recommendations vjtag tie-off resistance* vjtag at 3.3 v 200 ? to 1 k ? vjtag at 2.5 v 200 ? to 1 k ? vjtag at 1.8 v 500 ? to 1 k ? vjtag at 1.5 v 500 ? to 1 k ? note: equivalent parallel resistance if more than one device is on the jtag chain
igloo low power flash fpgas revision 23 3-5 in critical applications, an upset in the jtag circui t could allow entrance to an undesired jtag state. in such cases, microsemi recommends tying off trst to gnd through a resistor placed close to the fpga pin. note that to operate at all vjtag voltages, 500 ? to 1 k ? will satisfy the requirements. special function pins nc no connect this pin is not connected to circuitry within the devic e. these pins can be driven to any voltage or can be left floating with no effect on the operation of the device. dc do not connect this pin should not be connected to any signals on the pcb. these pins should be left unconnected. packaging semiconductor technology is constantly shrinking in size while growing in capability and functional integration. to enable next-generation silicon tech nologies, semiconductor packages have also evolved to provide improved performance and flexibility. microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability an d performance. microsemi ic packaging technology efficiently supports high-density fpgas with large-pin- count ball grid arrays (bga s), but is also flexible enough to accommodate stringent form factor requi rements for chip scale packaging (csp). in addition, microsemi offers a variety of packages designed to meet your most dema nding application and economic requirements for today's embedded and mobile systems. related documents user?s guides igloo fpga fabric user?s guide http://www.microsemi.com/soc/documents/igloo_ug.pdf packaging documents the following documents provide packaging information and device selection for low power flash devices. product catalog http://www.microsemi.com/soc /documents/prodcat_pib.pdf lists devices currently recommended for new designs and the packages available for each member of the family. use this document or the datasheet tables to determine the best package for your design, and which package drawing to use. package mechanical drawings http://www.microsemi.com/soc /documents/pckgmechdrwngs.pdf this document contains the package mechanical dr awings for all packages currently or previously supplied by microsemi. use the bookmarks to na vigate to the package mechanical drawings. additional packaging materials are available on the microsemi soc products group website at http://www.microsemi.com/soc/pro ducts/solutions/package/docs.aspx .

revision 23 4-1 4 ? package pin assignments uc81 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/pr oducts/solutions/package/docs.aspx . note: this is the bottom view of the package. 1 2 3 4 5 6 7 8 9 a b c d e f g h j a1 ball pad corner
package pin assignments 4-2 revision 23 uc81 pin number agl030 function a1 io00rsb0 a2 io02rsb0 a3 io06rsb0 a4 io11rsb0 a5 io16rsb0 a6 io19rsb0 a7 io22rsb0 a8 io24rsb0 a9 io26rsb0 b1 io81rsb1 b2 io04rsb0 b3 io10rsb0 b4 io13rsb0 b5 io15rsb0 b6 io20rsb0 b7 io21rsb0 b8 io28rsb0 b9 io25rsb0 c1 io79rsb1 c2 io80rsb1 c3 io08rsb0 c4 io12rsb0 c5 io17rsb0 c6 io14rsb0 c7 io18rsb0 c8 io29rsb0 c9 io27rsb0 d1 io74rsb1 d2 io76rsb1 d3 io77rsb1 d4 vcc d5 vccib0 d6 gnd d7 io23rsb0 d8 io31rsb0 d9 io30rsb0 e1 geb0/io71rsb1 e2 gea0/io72rsb1 e3 gec0/io73rsb1 e4 vccib1 e5 vcc e6 vccib0 e7 gdc0/io32rsb0 e8 gda0/io33rsb0 e9 gdb0/io34rsb0 f1 io68rsb1 f2 io67rsb1 f3 io64rsb1 f4 gnd f5 vccib1 f6 io47rsb1 f7 io36rsb0 f8 io38rsb0 f9 io40rsb0 g1 io65rsb1 g2 io66rsb1 g3 io57rsb1 g4 io53rsb1 g5 io49rsb1 g6 io45rsb1 g7 io46rsb1 g8 vjtag g9 trst h1 io62rsb1 h2 ff/io60rsb1 h3 io58rsb1 h4 io54rsb1 h5 io48rsb1 h6 io43rsb1 h7 io42rsb1 h8 tdi h9 tdo uc81 pin number agl030 function j1 io63rsb1 j2 io61rsb1 j3 io59rsb1 j4 io56rsb1 j5 io52rsb1 j6 io44rsb1 j7 tck j8 tms j9 vpump uc81 pin number agl030 function
igloo low power flash fpgas revision 23 4-3 cs81 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/pr oducts/solutions/package/docs.aspx . note: this is the bottom view of the package. 1 2 3 4 5 6 7 8 9 a b c d e f g h j a1 ball pad corner
package pin assignments 4-4 revision 23 cs81 pin number agl030 function a1 io00rsb0 a2 io02rsb0 a3 io06rsb0 a4 io11rsb0 a5 io16rsb0 a6 io19rsb0 a7 io22rsb0 a8 io24rsb0 a9 io26rsb0 b1 io81rsb1 b2 io04rsb0 b3 io10rsb0 b4 io13rsb0 b5 io15rsb0 b6 io20rsb0 b7 io21rsb0 b8 io28rsb0 b9 io25rsb0 c1 io79rsb1 c2 io80rsb1 c3 io08rsb0 c4 io12rsb0 c5 io17rsb0 c6 io14rsb0 c7 io18rsb0 c8 io29rsb0 c9 io27rsb0 d1 io74rsb1 d2 io76rsb1 d3 io77rsb1 d4 vcc d5 vccib0 d6 gnd d7 io23rsb0 d8 io31rsb0 d9 io30rsb0 e1 geb0/io71rsb1 e2 gea0/io72rsb1 e3 gec0/io73rsb1 e4 vccib1 e5 vcc e6 vccib0 e7 gdc0/io32rsb0 e8 gda0/io33rsb0 e9 gdb0/io34rsb0 f1 io68rsb1 f2 io67rsb1 f3 io64rsb1 f4 gnd f5 vccib1 f6 io47rsb1 f7 io36rsb0 f8 io38rsb0 f9 io40rsb0 g1 io65rsb1 g2 io66rsb1 g3 io57rsb1 g4 io53rsb1 g5 io49rsb1 g6 io44rsb1 g7 io46rsb1 g8 vjtag g9 trst h1 io62rsb1 h2 ff/io60rsb1 h3 io58rsb1 h4 io54rsb1 h5 io48rsb1 h6 io43rsb1 h7 io42rsb1 h8 tdi h9 tdo cs81 pin number agl030 function j1 io63rsb1 j2 io61rsb1 j3 io59rsb1 j4 io56rsb1 j5 io52rsb1 j6 io45rsb1 j7 tck j8 tms j9 vpump cs81 pin number agl030 function
igloo low power flash fpgas revision 23 4-5 cs81 pin number agl250 function a1 gaa0/io00rsb0 a2 gaa1/io01rsb0 a3 gac0/io04rsb0 a4 io13rsb0 a5 io21rsb0 a6 io27rsb0 a7 gbb0/io37rsb0 a8 gba1/io40rsb0 a9 gba2/io41ppb1 b1 gaa2/io118upb3 b2 gab0/io02rsb0 b3 gac1/io05rsb0 b4 io11rsb0 b5 io23rsb0 b6 gbc0/io35rsb0 b7 gbb1/io38rsb0 b8 io41npb1 b9 gbb2/io42psb1 c1 gab2/io117upb3 c2 io118vpb3 c3 gnd c4 io15rsb0 c5 io25rsb0 c6 gnd c7 gba0/io39rsb0 c8 gbc2/io43pdb1 c9 io43ndb1 d1 gac2/io116usb3 d2 io117vpb3 d3 gfa2/io107psb3 d4 vcc d5 vccib0 d6 gnd d7 io52npb1 d8 gcc1/io48pdb1 d9 gcc0/io48ndb1 e1 gfb0/io109ndb3 e2 gfb1/io109pdb3 e3 gfa1/io108psb3 e4 vccib3 e5 vcc e6 vccib1 e7 gca0/io50ndb1 e8 gca1/io50pdb1 e9 gcb2/io52ppb1 f1 vccplf f2 vcomplf f3 gnd f4 gnd f5 vccib2 f6 gnd f7 gda1/io60usb1 f8 gdc1/io58udb1 f9 gdc0/io58vdb1 g1 gea0/io98ndb3 g2 gec1/io100pdb3 g3 gec0/io100ndb3 g4 io91rsb2 g5 io86rsb2 g6 io71rsb2 g7 gdb2/io62rsb2 g8 vjtag g9 trst h1 gea1/io98pdb3 h2 ff/geb2/io96rsb2 h3 io93rsb2 h4 io90rsb2 h5 io85rsb2 h6 io77rsb2 h7 gda2/io61rsb2 h8 tdi h9 tdo cs81 pin number agl250 function j1 gea2/io97rsb2 j2 gec2/io95rsb2 j3 io92rsb2 j4 io88rsb2 j5 io84rsb2 j6 io74rsb2 j7 tck j8 tms j9 vpump cs81 pin number agl250 function
package pin assignments 4-6 revision 23 cs121 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/pr oducts/solutions/package/docs.aspx . note: this is the bottom view of the package. 11 10 1 2 3 4 5 6 7 8 9 a b c d e f g h j k l
igloo low power flash fpgas revision 23 4-7 cs121 pin number agl060 function a1 gndq a2 io01rsb0 a3 gaa1/io03rsb0 a4 gac1/io07rsb0 a5 io15rsb0 a6 io13rsb0 a7 io17rsb0 a8 gbb1/io22rsb0 a9 gba1/io24rsb0 a10 gndq a11 vmv0 b1 gaa2/io95rsb1 b2 io00rsb0 b3 gaa0/io02rsb0 b4 gac0/io06rsb0 b5 io08rsb0 b6 io12rsb0 b7 io16rsb0 b8 gbc1/io20rsb0 b9 gbb0/io21rsb0 b10 gbb2/io27rsb0 b11 gba2/io25rsb0 c1 io89rsb1 c2 gac2/io91rsb1 c3 gab1/io05rsb0 c4 gab0/io04rsb0 c5 io09rsb0 c6 io14rsb0 c7 gba0/io23rsb0 c8 gbc0/io19rsb0 c9 io26rsb0 c10 io28rsb0 c11 gbc2/io29rsb0 d1 io88rsb1 d2 io90rsb1 d3 gab2/io93rsb1 d4 io10rsb0 d5 io11rsb0 d6 io18rsb0 d7 io32rsb0 d8 io31rsb0 d9 gca2/io41rsb0 d10 io30rsb0 d11 io33rsb0 e1 io87rsb1 e2 gfc0/io85rsb1 e3 io92rsb1 e4 io94rsb1 e5 vcc e6 vccib0 e7 gnd e8 gcc0/io36rsb0 e9 io34rsb0 e10 gcb1/io37rsb0 e11 gcc1/io35rsb0 f1* vcomplf f2 gfb0/io83rsb1 f3 gfa0/io82rsb1 f4 gfc1/io86rsb1 f5 vccib1 f6 vcc f7 vccib0 f8 gcb2/io42rsb0 f9 gcc2/io43rsb0 f10 gcb0/io38rsb0 f11 gca1/io39rsb0 g1* vccplf g2 gfb2/io79rsb1 g3 gfa1/io81rsb1 g4 gfb1/io84rsb1 g5 gnd g6 vccib1 cs121 pin number agl060 function g7 vcc g8 gdc0/io46rsb0 g9 gda1/io49rsb0 g10 gdb0/io48rsb0 g11 gca0/io40rsb0 h1 io75rsb1 h2 io76rsb1 h3 gfc2/io78rsb1 h4 gfa2/io80rsb1 h5 io77rsb1 h6 gec2/io66rsb1 h7 io54rsb1 h8 gdc2/io53rsb1 h9 vjtag h10 trst h11 io44rsb0 j1 gec1/io74rsb1 j2 gec0/io73rsb1 j3 geb1/io72rsb1 j4 gea0/io69rsb1 j5 ff/geb2/io67rsb1 j6 io62rsb1 j7 gda2/io51rsb1 j8 gdb2/io52rsb1 j9 tdi j10 tdo j11 gdc1/io45rsb0 k1 geb0/io71rsb1 k2 gea1/io70rsb1 k3 gea2/io68rsb1 k4 io64rsb1 k5 io60rsb1 k6 io59rsb1 k7 io56rsb1 k8 tck k9 tms cs121 pin number agl060 function note: *pin numbers f1 and g1 must be connected to gr ound because a pll is not supported for agl060-cs/g121.
package pin assignments 4-8 revision 23 k10 vpump k11 gdb1/io47rsb0 l1 vmv1 l2 gndq l3 io65rsb1 l4 io63rsb1 l5 io61rsb1 l6 io58rsb1 l7 io57rsb1 l8 io55rsb1 l9 gndq l10 gda0/io50rsb0 l11 vmv1 cs121 pin number agl060 function
igloo low power flash fpgas revision 23 4-9 cs196 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/produ cts/solutions/package/docs.aspx. note: this is the bottom view of the package. a1 ball pad corner 10 11 12 13 14 9 8 7 6 5 4 3 2 1 a b c d e f g h j k l m n p
package pin assignments 4-10 revision 23 cs196 pin number agl125 function a1 gnd a2 gaa0/io00rsb0 a3 gac0/io04rsb0 a4 gac1/io05rsb0 a5 io09rsb0 a6 io15rsb0 a7 io18rsb0 a8 io22rsb0 a9 io27rsb0 a10 gbc0/io35rsb0 a11 gbb0/io37rsb0 a12 gbb1/io38rsb0 a13 gba1/io40rsb0 a14 gnd b1 vccib1 b2 vmv0 b3 gaa1/io01rsb0 b4 gab1/io03rsb0 b5 gnd b6 io16rsb0 b7 io20rsb0 b8 io24rsb0 b9 io28rsb0 b10 gnd b11 gbc1/io36rsb0 b12 gba0/io39rsb0 b13 gba2/io41rsb0 b14 gbb2/io43rsb0 c1 gac2/io128rsb1 c2 gab2/io130rsb1 c3 gndq c4 vccib0 c5 gab0/io02rsb0 c6 io14rsb0 c7 vccib0 c8 nc c9 io23rsb0 c10 io29rsb0 c11 vccib0 c12 io42rsb0 c13 gndq c14 io44rsb0 d1 io127rsb1 d2 io129rsb1 d3 gaa2/io132rsb1 d4 io126rsb1 d5 io06rsb0 d6 io13rsb0 d7 io19rsb0 d8 io21rsb0 d9 io26rsb0 d10 io31rsb0 d11 io30rsb0 d12 vmv0 d13 io46rsb0 d14 gbc2/io45rsb0 e1 io125rsb1 e2 gnd e3 io131rsb1 e4 vccib1 e5 nc e6 io08rsb0 e7 io17rsb0 e8 io12rsb0 e9 io11rsb0 e10 nc e11 vccib0 e12 io32rsb0 e13 gnd e14 io34rsb0 f1 io124rsb1 f2 io114rsb1 cs196 pin number agl125 function f3 io113rsb1 f4 io112rsb1 f5 io111rsb1 f6 nc f7 vcc f8 vcc f9 nc f10 io07rsb0 f11 io25rsb0 f12 io10rsb0 f13 io33rsb0 f14 io47rsb0 g1 gfb1/io121rsb1 g2 gfa0/io119rsb1 g3 gfa2/io117rsb1 g4 vcomplf g5 gfc0/io122rsb1 g6 vcc g7 gnd g8 gnd g9 vcc g10 gcc0/io52rsb0 g11 gcb1/io53rsb0 g12 gca0/io56rsb0 g13 io48rsb0 g14 gcc2/io59rsb0 h1 gfb0/io120rsb1 h2 gfa1/io118rsb1 h3 vccplf h4 gfb2/io116rsb1 h5 gfc1/io123rsb1 h6 vcc h7 gnd h8 gnd h9 vcc h10 gcc1/io51rsb0 cs196 pin number agl125 function
igloo low power flash fpgas revision 23 4-11 h11 gcb0/io54rsb0 h12 gca1/io55rsb0 h13 io49rsb0 h14 gca2/io57rsb0 j1 gfc2/io115rsb1 j2 io110rsb1 j3 io94rsb1 j4 io93rsb1 j5 io89rsb1 j6 nc j7 vcc j8 vcc j9 nc j10 io60rsb0 j11 gcb2/io58rsb0 j12 io50rsb0 j13 gdc1/io61rsb0 j14 gdc0/io62rsb0 k1 io99rsb1 k2 gnd k3 io95rsb1 k4 vccib1 k5 nc k6 io86rsb1 k7 io80rsb1 k8 io74rsb1 k9 io72rsb1 k10 nc k11 vccib0 k12 gda1/io65rsb0 k13 gnd k14 gdb1/io63rsb0 l1 geb1/io107rsb1 l2 gec1/io109rsb1 l3 gec0/io108rsb1 l4 io96rsb1 cs196 pin number agl125 function l5 io91rsb1 l6 io90rsb1 l7 io83rsb1 l8 io81rsb1 l9 io71rsb1 l10 io70rsb1 l11 vpump l12 vjtag l13 gda0/io66rsb0 l14 gdb0/io64rsb0 m1 geb0/io106rsb1 m2 gea1/io105rsb1 m3 gndq m4 vccib1 m5 io92rsb1 m6 io88rsb1 m7 nc m8 vccib1 m9 io76rsb1 m10 gdb2/io68rsb1 m11 vccib1 m12 vmv1 m13 trst m14 vccib0 n1 gea0/io104rsb1 n2 vmv1 n3 gec2/io101rsb1 n4 io100rsb1 n5 gnd n6 io87rsb1 n7 io82rsb1 n8 io78rsb1 n9 io73rsb1 n10 gnd n11 tck n12 tdi cs196 pin number agl125 function n13 gndq n14 tdo p1 gnd p2 gea2/io103rsb1 p3 ff/geb2/io102rsb1 p4 io98rsb1 p5 io97rsb1 p6 io85rsb1 p7 io84rsb1 p8 io79rsb1 p9 io77rsb1 p10 io75rsb1 p11 gdc2/io69rsb1 p12 gda2/io67rsb1 p13 tms p14 gnd cs196 pin number agl125 function
package pin assignments 4-12 revision 23 cs196 pin number agl250 function a1 gnd a2 gaa0/io00rsb0 a3 gac0/io04rsb0 a4 gac1/io05rsb0 a5 io10rsb0 a6 io13rsb0 a7 io17rsb0 a8 io19rsb0 a9 io23rsb0 a10 gbc0/io35rsb0 a11 gbb0/io37rsb0 a12 gbb1/io38rsb0 a13 gba1/io40rsb0 a14 gnd b1 vccib3 b2 vmv0 b3 gaa1/io01rsb0 b4 gab1/io03rsb0 b5 gnd b6 io12rsb0 b7 io16rsb0 b8 io22rsb0 b9 io24rsb0 b10 gnd b11 gbc1/io36rsb0 b12 gba0/io39rsb0 b13 gba2/io41ppb1 b14 gbb2/io42pdb1 c1 gac2/io116udb3 c2 gab2/io117udb3 c3 gndq c4 vccib0 c5 gab0/io02rsb0 c6 io11rsb0 c7 vccib0 c8 io20rsb0 c9 io30rsb0 c10 io33rsb0 c11 vccib0 c12 io41npb1 c13 gndq c14 io42ndb1 d1 io116vdb3 d2 io117vdb3 d3 gaa2/io118udb3 d4 io113ppb3 d5 io08rsb0 d6 io14rsb0 d7 io15rsb0 d8 io18rsb0 d9 io25rsb0 d10 io32rsb0 d11 io44ppb1 d12 vmv1 d13 io43ndb1 d14 gbc2/io43pdb1 e1 io112pdb3 e2 gnd e3 io118vdb3 e4 vccib3 e5 io114usb3 e6 io07rsb0 e7 io09rsb0 e8 io21rsb0 e9 io31rsb0 e10 io34rsb0 e11 vccib1 e12 io44npb1 e13 gnd e14 io45pdb1 f1 io112ndb3 f2 io107npb3 cs196 pin number agl250 function f3 io111pdb3 f4 io111ndb3 f5 io113npb3 f6 io06rsb0 f7 vcc f8 vcc f9 io28rsb0 f10 io54pdb1 f11 io54ndb1 f12 io47ndb1 f13 io47pdb1 f14 io45ndb1 g1 gfb1/io109pdb3 g2 gfa0/io108ndb3 g3 gfa2/io107ppb3 g4 vcomplf g5 gfc0/io110ndb3 g6 vcc g7 gnd g8 gnd g9 vcc g10 gcc0/io48ndb1 g11 gcb1/io49pdb1 g12 gca0/io50ndb1 g13 io53ndb1 g14 gcc2/io53pdb1 h1 gfb0/io109ndb3 h2 gfa1/io108pdb3 h3 vccplf h4 gfb2/io106ppb3 h5 gfc1/io110pdb3 h6 vcc h7 gnd h8 gnd h9 vcc h10 gcc1/io48pdb1 cs196 pin number agl250 function
igloo low power flash fpgas revision 23 4-13 h11 gcb0/io49ndb1 h12 gca1/io50pdb1 h13 io51ndb1 h14 gca2/io51pdb1 j1 gfc2/io105pdb3 j2 io104ppb3 j3 io106npb3 j4 io103pdb3 j5 io103ndb3 j6 io80rsb2 j7 vcc j8 vcc j9 io64rsb2 j10 io56pdb1 j11 gcb2/io52pdb1 j12 io52ndb1 j13 gdc1/io58udb1 j14 gdc0/io58vdb1 k1 io105ndb3 k2 gnd k3 io104npb3 k4 vccib3 k5 io101ppb3 k6 io91rsb2 k7 io81rsb2 k8 io73rsb2 k9 io77rsb2 k10 io56ndb1 k11 vccib1 k12 gda1/io60upb1 k13 gnd k14 gdb1/io59udb1 l1 geb1/io99pdb3 l2 gec1/io100pdb3 l3 gec0/io100ndb3 l4 io101npb3 cs196 pin number agl250 function l5 io89rsb2 l6 io92rsb2 l7 io75rsb2 l8 io66rsb2 l9 io65rsb2 l10 io71rsb2 l11 vpump l12 vjtag l13 gda0/io60vpb1 l14 gdb0/io59vdb1 m1 geb0/io99ndb3 m2 gea1/io98ppb3 m3 gndq m4 vccib2 m5 io88rsb2 m6 io87rsb2 m7 io82rsb2 m8 vccib2 m9 io67rsb2 m10 gdb2/io62rsb2 m11 vccib2 m12 vmv2 m13 trst m14 vccib1 n1 gea0/io98npb3 n2 vmv3 n3 gec2/io95rsb2 n4 io94rsb2 n5 gnd n6 io86rsb2 n7 io78rsb2 n8 io74rsb2 n9 io69rsb2 n10 gnd n11 tck n12 tdi cs196 pin number agl250 function n13 gndq n14 tdo p1 gnd p2 gea2/io97rsb2 p3 ff/geb2/io96rsb2 p4 io90rsb2 p5 io85rsb2 p6 io83rsb2 p7 io79rsb2 p8 io76rsb2 p9 io72rsb2 p10 io68rsb2 p11 gdc2/io63rsb2 p12 gda2/io61rsb2 p13 tms p14 gnd cs196 pin number agl250 function
package pin assignments 4-14 revision 23 cs196 pin number agl400 function a1 gnd a2 gaa0/io00rsb0 a3 gac0/io04rsb0 a4 gac1/io05rsb0 a5 io14rsb0 a6 io18rsb0 a7 io26rsb0 a8 io29rsb0 a9 io36rsb0 a10 gbc0/io54rsb0 a11 gbb0/io56rsb0 a12 gbb1/io57rsb0 a13 gba1/io59rsb0 a14 gnd b1 vccib3 b2 vmv0 b2 vmv0 b3 gaa1/io01rsb0 b4 gab1/io03rsb0 b5 gnd b6 io17rsb0 b7 io25rsb0 b8 io34rsb0 b9 io39rsb0 b10 gnd b11 gbc1/io55rsb0 b12 gba0/io58rsb0 b13 gba2/io60ppb1 b14 gbb2/io61pdb1 c1 gac2/io153udb3 c2 gab2/io154udb3 c3 gndq c4 vccib0 c5 gab0/io02rsb0 c6 io15rsb0 c7 vccib0 c8 io31rsb0 c9 io44rsb0 c10 io49rsb0 c11 vccib0 c12 io60npb1 c13 gndq c14 io61ndb1 d1 io153vdb3 d2 io154vdb3 d3 gaa2/io155udb3 d4 io150ppb3 d5 io11rsb0 d6 io20rsb0 d7 io23rsb0 d8 io28rsb0 d9 io41rsb0 d10 io47rsb0 d11 io63ppb1 d12 vmv1 d13 io62ndb1 d14 gbc2/io62pdb1 e1 io149pdb3 e2 gnd e3 io155vdb3 e4 vccib3 e5 io151usb3 e6 io09rsb0 e7 io12rsb0 e8 io32rsb0 e9 io46rsb0 e10 io51rsb0 e11 vccib1 e12 io63npb1 e13 gnd e14 io64pdb1 f1 io149ndb3 cs196 pin number agl400 function f2 io144npb3 f3 io148pdb3 f4 io148ndb3 f5 io150npb3 f6 io07rsb0 f7 vcc f8 vcc f9 io43rsb0 f10 io73pdb1 f11 io73ndb1 f12 io66ndb1 f13 io66pdb1 f14 io64ndb1 g1 gfb1/io146pdb3 g2 gfa0/io145ndb3 g3 gfa2/io144ppb3 g4 vcomplf g5 gfc0/io147ndb3 g6 vcc g7 gnd g8 gnd g9 vcc g10 gcc0/io67ndb1 g11 gcb1/io68pdb1 g12 gca0/io69ndb1 g13 io72ndb1 g14 gcc2/io72pdb1 h1 gfb0/io146ndb3 h2 gfa1/io145pdb3 h3 vccplf h4 gfb2/io143ppb3 h5 gfc1/io147pdb3 h6 vcc h7 gnd h8 gnd h9 vcc cs196 pin number agl400 function
igloo low power flash fpgas revision 23 4-15 h10 gcc1/io67pdb1 h11 gcb0/io68ndb1 h12 gca1/io69pdb1 h13 io70ndb1 h14 gca2/io70pdb1 j1 gfc2/io142pdb3 j2 io141ppb3 j3 io143npb3 j4 io140pdb3 j5 io140ndb3 j6 io109rsb2 j7 vcc j8 vcc j9 io84rsb2 j10 io75pdb1 j11 gcb2/io71pdb1 j12 io71ndb1 j13 gdc1/io77udb1 j14 gdc0/io77vdb1 k1 io142ndb3 k2 gnd k3 io141npb3 k4 vccib3 k5 io138ppb3 k6 io125rsb2 k7 io110rsb2 k8 io98rsb2 k9 io104rsb2 k10 io75ndb1 k11 vccib1 k12 gda1/io79upb1 k13 gnd k14 gdb1/io78udb1 l1 geb1/io136pdb3 l2 gec1/io137pdb3 l3 gec0/io137ndb3 cs196 pin number agl400 function l4 io138npb3 l5 io122rsb2 l6 io128rsb2 l7 io101rsb2 l8 io88rsb2 l9 io86rsb2 l10 io94rsb2 l11 vpump l12 vjtag l13 gda0/io79vpb1 l14 gdb0/io78vdb1 m1 geb0/io136ndb3 m2 gea1/io135ppb3 m3 gndq m4 vccib2 m5 io120rsb2 m6 io119rsb2 m7 io112rsb2 m8 vccib2 m9 io89rsb2 m10 gdb2/io81rsb2 m11 vccib2 m12 vmv2 m12 vmv2 m13 trst m14 vccib1 n1 gea0/io135npb3 n2 vmv3 n3 gec2/io132rsb2 n4 io130rsb2 n5 gnd n6 io117rsb2 n7 io106rsb2 n8 io100rsb2 n9 io92rsb2 n10 gnd cs196 pin number agl400 function n11 tck n12 tdi n13 gndq n14 tdo p1 gnd p2 gea2/io134rsb2 p3 ff/geb2/io133rsb 2 p4 io123rsb2 p5 io116rsb2 p6 io114rsb2 p7 io107rsb2 p8 io103rsb2 p9 io95rsb2 p10 io91rsb2 p11 gdc2/io82rsb2 p12 gda2/io80rsb2 p13 tms p14 gnd cs196 pin number agl400 function
package pin assignments 4-16 revision 23 cs281 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/pr oducts/solutions/package/docs.aspx . note: this is the bottom view of the package. 10 9 8 7 6 5 4 3 2 1 11 12 13 14 15 16 17 18 19 m n p r t u v w d e f a b c g h j k l
igloo low power flash fpgas revision 23 4-17 cs281 pin number agl600 function a1 gnd a2 gab0/io02rsb0 a3 gac1/io05rsb0 a4 io07rsb0 a5 io10rsb0 a6 io14rsb0 a7 io18rsb0 a8 io21rsb0 a9 io22rsb0 a10 vccib0 a11 io33rsb0 a12 io40rsb0 a13 io37rsb0 a14 io48rsb0 a15 io51rsb0 a16 io53rsb0 a17 gbc1/io55rsb0 a18 gba0/io58rsb0 a19 gnd b1 gaa2/io174ppb3 b2 vccib0 b3 gab1/io03rsb0 b4 gac0/io04rsb0 b5 io06rsb0 b6 gnd b7 io15rsb0 b8 io20rsb0 b9 io23rsb0 b10 io24rsb0 b11 io36rsb0 b12 io35rsb0 b13 io44rsb0 b14 gnd b15 io52rsb0 b16 gbc0/io54rsb0 b17 gba1/io59rsb0 b18 vccib1 b19 io61ndb1 c1 gab2/io173ppb3 c2 io174npb3 c6 io12rsb0 c14 io50rsb0 c18 io60npb1 c19 gbb2/io61pdb1 d1 io170ppb3 d2 io172npb3 d4 gaa0/io00rsb0 d5 gaa1/io01rsb0 d6 io09rsb0 d7 io16rsb0 d8 io19rsb0 d9 io26rsb0 d10 gnd d11 io34rsb0 d12 io45rsb0 d13 io49rsb0 d14 io47rsb0 d15 gbb0/io56rsb0 d16 gba2/io60ppb1 d18 gbc2/io62ppb1 d19 io66npb1 e1 io169npb3 e2 io171ppb3 e4 io171npb3 e5 io08rsb0 e6 io11rsb0 e7 io13rsb0 e8 io17rsb0 e9 io25rsb0 e10 io30rsb0 e11 io41rsb0 e12 io42rsb0 cs281 pin number agl600 function e13 io46rsb0 e14 gbb1/io57rsb0 e15 io62npb1 e16 io63ppb1 e18 io64ppb1 e19 io65npb1 f1 io168npb3 f2 gnd f3 io169ppb3 f4 io170npb3 f5 io173npb3 f15 io63npb1 f16 io65ppb1 f17 io64npb1 f18 gnd f19 io68ppb1 g1 io167npb3 g2 io165ndb3 g4 io168ppb3 g5 io167ppb3 g7 gac2/io172ppb3 g8 vccib0 g9 io28rsb0 g10 io32rsb0 g11 io43rsb0 g12 vccib0 g13 io66ppb1 g15 io67ndb1 g16 io67pdb1 g18 gcc0/io69npb1 g19 gcb1/io70ppb1 h1 gfb0/io163npb3 h2 io165pdb3 h4 gfc1/io164ppb3 h5 gfb1/io163ppb3 h7 vccib3 cs281 pin number agl600 function
package pin assignments 4-18 revision 23 h8 vcc h9 vccib0 h10 vcc h11 vccib0 h12 vcc h13 vccib1 h15 io68npb1 h16 gcb0/io70npb1 h18 gca1/io71ppb1 h19 gca2/io72ppb1 j1 vcomplf j2 gfa0/io162ndb3 j4 vccplf j5 gfc0/io164npb3 j7 gfa2/io161pdb3 j8 vccib3 j9 gnd j10 gnd j11 gnd j12 vccib1 j13 gcc1/io69ppb1 j15 gca0/io71npb1 j16 gcb2/io73ppb1 j18 io72npb1 j19 io75psb1 k1 vccib3 k2 gfa1/io162pdb3 k4 gnd k5 io159npb3 k7 io161ndb3 k8 vcc k9 gnd k10 gnd k11 gnd k12 vcc k13 gcc2/io74ppb1 cs281 pin number agl600 function k15 io73npb1 k16 gnd k18 io74npb1 k19 vccib1 l1 gfb2/io160pdb3 l2 io160ndb3 l4 gfc2/io159ppb3 l5 io153ppb3 l7 io153npb3 l8 vccib3 l9 gnd l10 gnd l11 gnd l12 vccib1 l13 io76ppb1 l15 io76npb1 l16 io77ppb1 l18 io78npb1 l19 io77npb1 m1 io158pdb3 m2 io158ndb3 m4 io154npb3 m5 io152ppb3 m7 vccib3 m8 vcc m9 vccib2 m10 vcc m11 vccib2 m12 vcc m13 vccib1 m15 io79npb1 m16 io81npb1 m18 io79ppb1 m19 io78ppb1 n1 io154ppb3 n2 io152npb3 cs281 pin number agl600 function n4 io150ppb3 n5 io148npb3 n7 gea2/io143rsb2 n8 vccib2 n9 io117rsb2 n10 io115rsb2 n11 io114rsb2 n12 vccib2 n13 vpump n15 io82ppb1 n16 io85ppb1 n18 io82npb1 n19 io81ppb1 p1 io151pdb3 p2 gnd p3 io151ndb3 p4 io149ppb3 p5 gea0/io144npb3 p15 io83ndb1 p16 io83pdb1 p17 gdc1/io86ppb1 p18 gnd p19 io85npb1 r1 io150npb3 r2 io149npb3 r4 gec1/io146ppb3 r5 geb1/io145ppb3 r6 io138rsb2 r7 io127rsb2 r8 io123rsb2 r9 io118rsb2 r10 io111rsb2 r11 io106rsb2 r12 io103rsb2 r13 io97rsb2 r14 io95rsb2 cs281 pin number agl600 function
igloo low power flash fpgas revision 23 4-19 r15 io94rsb2 r16 gda1/io88ppb1 r18 gdb0/io87npb1 r19 gdc0/io86npb1 t1 io148ppb3 t2 gec0/io146npb3 t4 geb0/io145npb3 t5 io132rsb2 t6 io136rsb2 t7 io130rsb2 t8 io126rsb2 t9 io120rsb2 t10 gnd t11 io113rsb2 t12 io104rsb2 t13 io101rsb2 t14 io98rsb2 t15 gdc2/io91rsb2 t16 tms t18 vjtag t19 gdb1/io87ppb1 u1 io147pdb3 u2 gea1/io144ppb3 u6 io131rsb2 u14 io99rsb2 u18 trst u19 gda0/io88npb1 v1 io147ndb3 v2 vccib3 v3 gec2/io141rsb2 v4 io140rsb2 v5 io135rsb2 v6 gnd v7 io125rsb2 v8 io122rsb2 v9 io116rsb2 cs281 pin number agl600 function v10 io112rsb2 v11 io110rsb2 v12 io108rsb2 v13 io102rsb2 v14 gnd v15 io93rsb2 v16 gda2/io89rsb2 v17 tdi v18 vccib2 v19 tdo w1 gnd w2 ff/geb2/io142rsb2 w3 io139rsb2 w4 io137rsb2 w5 io134rsb2 w6 io133rsb2 w7 io128rsb2 w8 io124rsb2 w9 io119rsb2 w10 vccib2 w11 io109rsb2 w12 io107rsb2 w13 io105rsb2 w14 io100rsb2 w15 io96rsb2 w16 io92rsb2 w17 gdb2/io90rsb2 w18 tck w19 gnd cs281 pin number agl600 function
package pin assignments 4-20 revision 23 cs281 pin number agl1000 function a1 gnd a2 gab0/io02rsb0 a3 gac1/io05rsb0 a4 io13rsb0 a5 io11rsb0 a6 io16rsb0 a7 io20rsb0 a8 io24rsb0 a9 io29rsb0 a10 vccib0 a11 io39rsb0 a12 io45rsb0 a13 io48rsb0 a14 io58rsb0 a15 io61rsb0 a16 io62rsb0 a17 gbc1/io73rsb0 a18 gba0/io76rsb0 a19 gnd b1 gaa2/io225ppb3 b2 vccib0 b3 gab1/io03rsb0 b4 gac0/io04rsb0 b5 io12rsb0 b6 gnd b7 io21rsb0 b8 io26rsb0 b9 io34rsb0 b10 io35rsb0 b11 io36rsb0 b12 io46rsb0 b13 io52rsb0 b14 gnd b15 io59rsb0 b16 gbc0/io72rsb0 b17 gba1/io77rsb0 b18 vccib1 b19 io79ndb1 c1 gab2/io224ppb3 c2 io225npb3 c6 io18rsb0 c14 io63rsb0 c18 io78npb1 c19 gbb2/io79pdb1 d1 io219ppb3 d2 io223npb3 d4 gaa0/io00rsb0 d5 gaa1/io01rsb0 d6 io15rsb0 d7 io19rsb0 d8 io27rsb0 d9 io32rsb0 d10 gnd d11 io38rsb0 d12 io44rsb0 d13 io47rsb0 d14 io60rsb0 d15 gbb0/io74rsb0 d16 gba2/io78ppb1 d18 gbc2/io80ppb1 d19 io88npb1 e1 io217npb3 e2 io221ppb3 e4 io221npb3 e5 io10rsb0 e6 io14rsb0 e7 io25rsb0 e8 io28rsb0 e9 io31rsb0 e10 io33rsb0 e11 io42rsb0 e12 io49rsb0 cs281 pin number agl1000 function e13 io53rsb0 e14 gbb1/io75rsb0 e15 io80npb1 e16 io85ppb1 e18 io83ppb1 e19 io84npb1 f1 io214npb3 f2 gnd f3 io217ppb3 f4 io219npb3 f5 io224npb3 f15 io85npb1 f16 io84ppb1 f17 io83npb1 f18 gnd f19 io90ppb1 g1 io212npb3 g2 io211ndb3 g4 io214ppb3 g5 io212ppb3 g7 gac2/io223ppb3 g8 vccib0 g9 io30rsb0 g10 io37rsb0 g11 io43rsb0 g12 vccib0 g13 io88ppb1 g15 io89ndb1 g16 io89pdb1 g18 gcc0/io91npb1 g19 gcb1/io92ppb1 h1 gfb0/io208npb3 h2 io211pdb3 h4 gfc1/io209ppb3 h5 gfb1/io208ppb3 h7 vccib3 cs281 pin number agl1000 function
igloo low power flash fpgas revision 23 4-21 h8 vcc h9 vccib0 h10 vcc h11 vccib0 h12 vcc h13 vccib1 h15 io90npb1 h16 gcb0/io92npb1 h18 gca1/io93ppb1 h19 gca2/io94ppb1 j1 vcomplf j2 gfa0/io207ndb3 j4 vccplf j5 gfc0/io209npb3 j7 gfa2/io206pdb3 j8 vccib3 j9 gnd j10 gnd j11 gnd j12 vccib1 j13 gcc1/io91ppb1 j15 gca0/io93npb1 j16 gcb2/io95ppb1 j18 io94npb1 j19 io102psb1 k1 vccib3 k2 gfa1/io207pdb3 k4 gnd k5 io204npb3 k7 io206ndb3 k8 vcc k9 gnd k10 gnd k11 gnd k12 vcc k13 gcc2/io96ppb1 cs281 pin number agl1000 function k15 io95npb1 k16 gnd k18 io96npb1 k19 vccib1 l1 gfb2/io205pdb3 l2 io205ndb3 l4 gfc2/io204ppb3 l5 io203ppb3 l7 io203npb3 l8 vccib3 l9 gnd l10 gnd l11 gnd l12 vccib1 l13 io103ppb1 l15 io103npb1 l16 io97ppb1 l18 io98npb1 l19 io97npb1 m1 io202pdb3 m2 io202ndb3 m4 io201npb3 m5 io198ppb3 m7 vccib3 m8 vcc m9 vccib2 m10 vcc m11 vccib2 m12 vcc m13 vccib1 m15 io104npb1 m16 io100npb1 m18 io104ppb1 m19 io98ppb1 n1 io201ppb3 n2 io198npb3 cs281 pin number agl1000 function n4 io196ppb3 n5 io197npb3 n7 gea2/io187rsb2 n8 vccib2 n9 io155rsb2 n10 io154rsb2 n11 io150rsb2 n12 vccib2 n13 vpump n15 io107ppb1 n16 io105ppb1 n18 io107npb1 n19 io100ppb1 p1 io195pdb3 p2 gnd p3 io195ndb3 p4 io194ppb3 p5 gea0/io188npb3 p15 io108ndb1 p16 io108pdb1 p17 gdc1/io111ppb1 p18 gnd p19 io105npb1 r1 io196npb3 r2 io194npb3 r4 gec1/io190ppb3 r5 geb1/io189ppb3 r6 io184rsb2 r7 io173rsb2 r8 io168rsb2 r9 io160rsb2 r10 io151rsb2 r11 io141rsb2 r12 io136rsb2 r13 io127rsb2 r14 io124rsb2 cs281 pin number agl1000 function
package pin assignments 4-22 revision 23 r15 io122rsb2 r16 gda1/io113ppb1 r18 gdb0/io112npb1 r19 gdc0/io111npb1 t1 io197ppb3 t2 gec0/io190npb3 t4 geb0/io189npb3 t5 io181rsb2 t6 io172rsb2 t7 io171rsb2 t8 io156rsb2 t9 io159rsb2 t10 gnd t11 io139rsb2 t12 io138rsb2 t13 io129rsb2 t14 io123rsb2 t15 gdc2/io116rsb2 t16 tms t18 vjtag t19 gdb1/io112ppb1 u1 io193pdb3 u2 gea1/io188ppb3 u6 io167rsb2 u14 io128rsb2 u18 trst u19 gda0/io113npb1 v1 io193ndb3 v2 vccib3 v3 gec2/io185rsb2 v4 io182rsb2 v5 io175rsb2 v6 gnd v7 io161rsb2 v8 io143rsb2 v9 io146rsb2 cs281 pin number agl1000 function v10 io145rsb2 v11 io144rsb2 v12 io134rsb2 v13 io133rsb2 v14 gnd v15 io119rsb2 v16 gda2/io114rsb2 v17 tdi v18 vccib2 v19 tdo w1 gnd w2 ff/geb2/io186rsb2 w3 io183rsb2 w4 io176rsb2 w5 io170rsb2 w6 io162rsb2 w7 io157rsb2 w8 io152rsb2 w9 io149rsb2 w10 vccib2 w11 io140rsb2 w12 io135rsb2 w13 io130rsb2 w14 io125rsb2 w15 io120rsb2 w16 io118rsb2 w17 gdb2/io115rsb2 w18 tck w19 gnd cs281 pin number agl1000 function
igloo low power flash fpgas revision 23 4-23 qn48 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/pr oducts/solutions/package/docs.aspx . notes: 1. this is the bottom view of the package. 2. the die attach paddle center of the package is tied to ground (gnd). 48 1 pin 1
package pin assignments 4-24 revision 23 qn48 pin number agl030 function 1 io82rsb1 2 gec0/io73rsb1 3 gea0/io72rsb1 4 geb0/io71rsb1 5gnd 6vccib1 7 io68rsb1 8 io67rsb1 9 io66rsb1 10 io65rsb1 11 io64rsb1 12 io62rsb1 13 io61rsb1 14 ff/io60rsb1 15 io57rsb1 16 io55rsb1 17 io53rsb1 18 vcc 19 vccib1 20 io46rsb1 21 io42rsb1 22 tck 23 tdi 24 tms 25 vpump 26 tdo 27 trst 28 vjtag 29 io38rsb0 30 gdb0/io34rsb0 31 gda0/io33rsb0 32 gdc0/io32rsb0 33 vccib0 34 gnd 35 vcc 36 io25rsb0 37 io24rsb0 38 io22rsb0 39 io20rsb0 40 io18rsb0 41 io16rsb0 42 io14rsb0 43 io10rsb0 44 io08rsb0 45 io06rsb0 46 io04rsb0 47 io02rsb0 48 io00rsb0 qn48 pin number agl030 function
igloo low power flash fpgas revision 23 4-25 qn68 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/pr oducts/solutions/package/docs.aspx . notes: 1. this is the bottom view of the package. 2. the die attach paddle center of the package is tied to ground (gnd). pin a1 mark 1 68
package pin assignments 4-26 revision 23 qn68 pin number agl015 function 1 io82rsb1 2 io80rsb1 3 io78rsb1 4 io76rsb1 5 gec0/io73rsb1 6 gea0/io72rsb1 7 geb0/io71rsb1 8vcc 9gnd 10 vccib1 11 io68rsb1 12 io67rsb1 13 io66rsb1 14 io65rsb1 15 io64rsb1 16 io63rsb1 17 io62rsb1 18 ff/io60rsb1 19 io58rsb1 20 io56rsb1 21 io54rsb1 22 io52rsb1 23 io51rsb1 24 vcc 25 gnd 26 vccib1 27 io50rsb1 28 io48rsb1 29 io46rsb1 30 io44rsb1 31 io42rsb1 32 tck 33 tdi 34 tms 35 vpump 36 tdo 37 trst 38 vjtag 39 io40rsb0 40 io37rsb0 41 gdb0/io34rsb0 42 gda0/io33rsb0 43 gdc0/io32rsb0 44 vccib0 45 gnd 46 vcc 47 io31rsb0 48 io29rsb0 49 io28rsb0 50 io27rsb0 51 io25rsb0 52 io24rsb0 53 io22rsb0 54 io21rsb0 55 io19rsb0 56 io17rsb0 57 io15rsb0 58 io14rsb0 59 vccib0 60 gnd 61 vcc 62 io12rsb0 63 io10rsb0 64 io08rsb0 65 io06rsb0 66 io04rsb0 67 io02rsb0 68 io00rsb0 qn68 pin number agl015 function
igloo low power flash fpgas revision 23 4-27 qn68 pin number agl030 function 1 io82rsb1 2 io80rsb1 3 io78rsb1 4 io76rsb1 5 gec0/io73rsb1 6 gea0/io72rsb1 7 geb0/io71rsb1 8vcc 9gnd 10 vccib1 11 io68rsb1 12 io67rsb1 13 io66rsb1 14 io65rsb1 15 io64rsb1 16 io63rsb1 17 io62rsb1 18 ff/io60rsb1 19 io58rsb1 20 io56rsb1 21 io54rsb1 22 io52rsb1 23 io51rsb1 24 vcc 25 gnd 26 vccib1 27 io50rsb1 28 io48rsb1 29 io46rsb1 30 io44rsb1 31 io42rsb1 32 tck 33 tdi 34 tms 35 vpump 36 tdo 37 trst 38 vjtag 39 io40rsb0 40 io37rsb0 41 gdb0/io34rsb0 42 gda0/io33rsb0 43 gdc0/io32rsb0 44 vccib0 45 gnd 46 vcc 47 io31rsb0 48 io29rsb0 49 io28rsb0 50 io27rsb0 51 io25rsb0 52 io24rsb0 53 io22rsb0 54 io21rsb0 55 io19rsb0 56 io17rsb0 57 io15rsb0 58 io14rsb0 59 vccib0 60 gnd 61 vcc 62 io12rsb0 63 io10rsb0 64 io08rsb0 65 io06rsb0 66 io04rsb0 67 io02rsb0 68 io00rsb0 qn68 pin number agl030 function
package pin assignments 4-28 revision 23 qn132 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/pr oducts/solutions/package/docs.aspx . notes: 1. this is the bottom view of the package. 2. the die attach paddle center of the package is tied to ground (gnd). a37 a1 a12 a36 d4 d3 d1 d2 a25 a48 a24 a13 b34 b1 b11 b44 b22 b12 c31 c1 c10 b33 b23 c30 c21 c40 c20 c11 optional corner pad (4x) pin a1mark
igloo low power flash fpgas revision 23 4-29 qn132 pin number agl030 function a1 io80rsb1 a2 io77rsb1 a3 nc a4 io76rsb1 a5 gec0/io73rsb1 a6 nc a7 geb0/io71rsb1 a8 io69rsb1 a9 nc a10 vcc a11 io67rsb1 a12 io64rsb1 a13 io59rsb1 a14 io56rsb1 a15 nc a16 io55rsb1 a17 io53rsb1 a18 vcc a19 io50rsb1 a20 io48rsb1 a21 io45rsb1 a22 io44rsb1 a23 io43rsb1 a24 tdi a25 trst a26 io40rsb0 a27 nc a28 io39rsb0 a29 io38rsb0 a30 io36rsb0 a31 io35rsb0 a32 gdc0/io32rsb0 a33 nc a34 vcc a35 io30rsb0 a36 io27rsb0 a37 io22rsb0 a38 io19rsb0 a39 nc a40 io18rsb0 a41 io16rsb0 a42 io14rsb0 a43 vcc a44 io11rsb0 a45 io08rsb0 a46 io06rsb0 a47 io05rsb0 a48 io02rsb0 b1 io81rsb1 b2 io78rsb1 b3 gnd b4 io75rsb1 b5 nc b6 gnd b7 io70rsb1 b8 nc b9 gnd b10 io66rsb1 b11 io63rsb1 b12 ff/io60rsb1 b13 io57rsb1 b14 gnd b15 io54rsb1 b16 io52rsb1 b17 gnd b18 io49rsb1 b19 io46rsb1 b20 gnd b21 io42rsb1 b22 tms b23 tdo b24 io41rsb0 qn132 pin number agl030 function b25 gnd b26 nc b27 io37rsb0 b28 gnd b29 gda0/io33rsb0 b30 nc b31 gnd b32 io29rsb0 b33 io26rsb0 b34 io23rsb0 b35 io20rsb0 b36 gnd b37 io17rsb0 b38 io15rsb0 b39 gnd b40 io12rsb0 b41 io09rsb0 b42 gnd b43 io04rsb0 b44 io01rsb0 c1 io82rsb1 c2 io79rsb1 c3 nc c4 io74rsb1 c5 gea0/io72rsb1 c6 nc c7 nc c8 vccib1 c9 io65rsb1 c10 io62rsb1 c11 io61rsb1 c12 io58rsb1 c13 nc c14 nc c15 io51rsb1 c16 vccib1 qn132 pin number agl030 function
package pin assignments 4-30 revision 23 c17 io47rsb1 c18 nc c19 tck c20 nc c21 vpump c22 vjtag c23 nc c24 nc c25 nc c26 gdb0/io34rsb0 c27 nc c28 vccib0 c29 io28rsb0 c30 io25rsb0 c31 io24rsb0 c32 io21rsb0 c33 nc c34 nc c35 vccib0 c36 io13rsb0 c37 io10rsb0 c38 io07rsb0 c39 io03rsb0 c40 io00rsb0 d1 gnd d2 gnd d3 gnd d4 gnd qn132 pin number agl030 function
igloo low power flash fpgas revision 23 4-31 qn132 pin number agl060 function a1 gab2/io00rsb1 a2 io93rsb1 a3 vccib1 a4 gfc1/io89rsb1 a5 gfb0/io86rsb1 a6 vccplf a7 gfa1/io84rsb1 a8 gfc2/io81rsb1 a9 io78rsb1 a10 vcc a11 geb1/io75rsb1 a12 gea0/io72rsb1 a13 gec2/io69rsb1 a14 io65rsb1 a15 vcc a16 io64rsb1 a17 io63rsb1 a18 io62rsb1 a19 io61rsb1 a20 io58rsb1 a21 gdb2/io55rsb1 a22 nc a23 gda2/io54rsb1 a24 tdi a25 trst a26 gdc1/io48rsb0 a27 vcc a28 io47rsb0 a29 gcc2/io46rsb0 a30 gca2/io44rsb0 a31 gca0/io43rsb0 a32 gcb1/io40rsb0 a33 io36rsb0 a34 vcc a35 io31rsb0 a36 gba2/io28rsb0 a37 gbb1/io25rsb0 a38 gbc0/io22rsb0 a39 vccib0 a40 io21rsb0 a41 io18rsb0 a42 io15rsb0 a43 io14rsb0 a44 io11rsb0 a45 gab1/io08rsb0 a46 nc a47 gab0/io07rsb0 a48 io04rsb0 b1 io01rsb1 b2 gac2/io94rsb1 b3 gnd b4 gfc0/io88rsb1 b5 vcomplf b6 gnd b7 gfb2/io82rsb1 b8 io79rsb1 b9 gnd b10 geb0/io74rsb1 b11 vmv1 b12 ff/geb2/io70rsb 1 b13 io67rsb1 b14 gnd b15 nc b16 nc b17 gnd b18 io59rsb1 b19 gdc2/io56rsb1 b20 gnd b21 gndq b22 tms b23 tdo qn132 pin number agl060 function b24 gdc0/io49rsb0 b25 gnd b26 nc b27 gcb2/io45rsb0 b28 gnd b29 gcb0/io41rsb0 b30 gcc1/io38rsb0 b31 gnd b32 gbb2/io30rsb0 b33 vmv0 b34 gba0/io26rsb0 b35 gbc1/io23rsb0 b36 gnd b37 io20rsb0 b38 io17rsb0 b39 gnd b40 io12rsb0 b41 gac0/io09rsb0 b42 gnd b43 gaa1/io06rsb0 b44 gndq c1 gaa2/io02rsb1 c2 io95rsb1 c3 vcc c4 gfb1/io87rsb1 c5 gfa0/io85rsb1 c6 gfa2/io83rsb1 c7 io80rsb1 c8 vccib1 c9 gea1/io73rsb1 c10 gndq c11 gea2/io71rsb1 c12 io68rsb1 c13 vccib1 c14 nc c15 nc qn132 pin number agl060 function
package pin assignments 4-32 revision 23 c16 io60rsb1 c17 io57rsb1 c18 nc c19 tck c20 vmv1 c21 vpump c22 vjtag c23 vccib0 c24 nc c25 nc c26 gca1/io42rsb0 c27 gcc0/io39rsb0 c28 vccib0 c29 io29rsb0 c30 gndq c31 gba1/io27rsb0 c32 gbb0/io24rsb0 c33 vcc c34 io19rsb0 c35 io16rsb0 c36 io13rsb0 c37 gac1/io10rsb0 c38 nc c39 gaa0/io05rsb0 c40 vmv0 d1 gnd d2 gnd d3 gnd d4 gnd qn132 pin number agl060 function
igloo low power flash fpgas revision 23 4-33 qn132 pin number agl125 function a1 gab2/io69rsb1 a2 io130rsb1 a3 vccib1 a4 gfc1/io126rsb1 a5 gfb0/io123rsb1 a6 vccplf a7 gfa1/io121rsb1 a8 gfc2/io118rsb1 a9 io115rsb1 a10 vcc a11 geb1/io110rsb1 a12 gea0/io107rsb1 a13 gec2/io104rsb1 a14 io100rsb1 a15 vcc a16 io99rsb1 a17 io96rsb1 a18 io94rsb1 a19 io91rsb1 a20 io85rsb1 a21 io79rsb1 a22 vcc a23 gdb2/io71rsb1 a24 tdi a25 trst a26 gdc1/io61rsb0 a27 vcc a28 io60rsb0 a29 gcc2/io59rsb0 a30 gca2/io57rsb0 a31 gca0/io56rsb0 a32 gcb1/io53rsb0 a33 io49rsb0 a34 vcc a35 io44rsb0 a36 gba2/io41rsb0 a37 gbb1/io38rsb0 a38 gbc0/io35rsb0 a39 vccib0 a40 io28rsb0 a41 io22rsb0 a42 io18rsb0 a43 io14rsb0 a44 io11rsb0 a45 io07rsb0 a46 vcc a47 gac1/io05rsb0 a48 gab0/io02rsb0 b1 io68rsb1 b2 gac2/io131rsb1 b3 gnd b4 gfc0/io125rsb1 b5 vcomplf b6 gnd b7 gfb2/io119rsb1 b8 io116rsb1 b9 gnd b10 geb0/io109rsb1 b11 vmv1 b12 ff/geb2/io105rsb1 b13 io101rsb1 b14 gnd b15 io98rsb1 b16 io95rsb1 b17 gnd b18 io87rsb1 b19 io81rsb1 b20 gnd b21 gndq b22 tms b23 tdo b24 gdc0/io62rsb0 qn132 pin number agl125 function b25 gnd b26 nc b27 gcb2/io58rsb0 b28 gnd b29 gcb0/io54rsb0 b30 gcc1/io51rsb0 b31 gnd b32 gbb2/io43rsb0 b33 vmv0 b34 gba0/io39rsb0 b35 gbc1/io36rsb0 b36 gnd b37 io26rsb0 b38 io21rsb0 b39 gnd b40 io13rsb0 b41 io08rsb0 b42 gnd b43 gac0/io04rsb0 b44 gndq c1 gaa2/io67rsb1 c2 io132rsb1 c3 vcc c4 gfb1/io124rsb1 c5 gfa0/io122rsb1 c6 gfa2/io120rsb1 c7 io117rsb1 c8 vccib1 c9 gea1/io108rsb1 c10 gndq c11 gea2/io106rsb1 c12 io103rsb1 c13 vccib1 c14 io97rsb1 c15 io93rsb1 c16 io89rsb1 qn132 pin number agl125 function
package pin assignments 4-34 revision 23 c17 io83rsb1 c18 vccib1 c19 tck c20 vmv1 c21 vpump c22 vjtag c23 vccib0 c24 nc c25 nc c26 gca1/io55rsb0 c27 gcc0/io52rsb0 c28 vccib0 c29 io42rsb0 c30 gndq c31 gba1/io40rsb0 c32 gbb0/io37rsb0 c33 vcc c34 io24rsb0 c35 io19rsb0 c36 io16rsb0 c37 io10rsb0 c38 vccib0 c39 gab1/io03rsb0 c40 vmv0 d1 gnd d2 gnd d3 gnd d4 gnd qn132 pin number agl125 function
igloo low power flash fpgas revision 23 4-35 qn132 pin number agl250 function a1 gab2/io117upb3 a2 io117vpb3 a3 vccib3 a4 gfc1/io110pdb3 a5 gfb0/io109npb3 a6 vccplf a7 gfa1/io108ppb3 a8 gfc2/io105ppb3 a9 io103ndb3 a10 vcc a11 gea1/io98ppb3 a12 gea0/io98npb3 a13 gec2/io95rsb2 a14 io91rsb2 a15 vcc a16 io90rsb2 a17 io87rsb2 a18 io85rsb2 a19 io82rsb2 a20 io76rsb2 a21 io70rsb2 a22 vcc a23 gdb2/io62rsb2 a24 tdi a25 trst a26 gdc1/io58udb1 a27 vcc a28 io54ndb1 a29 io52ndb1 a30 gca2/io51ppb1 a31 gca0/io50npb1 a32 gcb1/io49pdb1 a33 io47nsb1 a34 vcc a35 io41npb1 a36 gba2/io41ppb1 a37 gbb1/io38rsb0 a38 gbc0/io35rsb0 a39 vccib0 a40 io28rsb0 a41 io22rsb0 a42 io18rsb0 a43 io14rsb0 a44 io11rsb0 a45 io07rsb0 a46 vcc a47 gac1/io05rsb0 a48 gab0/io02rsb0 b1 io118vdb3 b2 gac2/io116udb3 b3 gnd b4 gfc0/io110ndb3 b5 vcomplf b6 gnd b7 gfb2/io106psb3 b8 io103pdb3 b9 gnd b10 geb0/io99ndb3 b11 vmv3 b12 ff/geb2/io96rsb2 b13 io92rsb2 b14 gnd b15 io89rsb2 b16 io86rsb2 b17 gnd b18 io78rsb2 b19 io72rsb2 b20 gnd b21 gndq b22 tms b23 tdo b24 gdc0/io58vdb1 qn132 pin number agl250 function b25 gnd b26 io54pdb1 b27 gcb2/io52pdb1 b28 gnd b29 gcb0/io49ndb1 b30 gcc1/io48pdb1 b31 gnd b32 gbb2/io42pdb1 b33 vmv1 b34 gba0/io39rsb0 b35 gbc1/io36rsb0 b36 gnd b37 io26rsb0 b38 io21rsb0 b39 gnd b40 io13rsb0 b41 io08rsb0 b42 gnd b43 gac0/io04rsb0 b44 gndq c1 gaa2/io118udb3 c2 io116vdb3 c3 vcc c4 gfb1/io109ppb3 c5 gfa0/io108npb3 c6 gfa2/io107psb3 c7 io105npb3 c8 vccib3 c9 geb1/io99pdb3 c10 gndq c11 gea2/io97rsb2 c12 io94rsb2 c13 vccib2 c14 io88rsb2 c15 io84rsb2 c16 io80rsb2 qn132 pin number agl250 function
package pin assignments 4-36 revision 23 c17 io74rsb2 c18 vccib2 c19 tck c20 vmv2 c21 vpump c22 vjtag c23 vccib1 c24 io53nsb1 c25 io51npb1 c26 gca1/io50ppb1 c27 gcc0/io48ndb1 c28 vccib1 c29 io42ndb1 c30 gndq c31 gba1/io40rsb0 c32 gbb0/io37rsb0 c33 vcc c34 io24rsb0 c35 io19rsb0 c36 io16rsb0 c37 io10rsb0 c38 vccib0 c39 gab1/io03rsb0 c40 vmv0 d1 gnd d2 gnd d3 gnd d4 gnd qn132 pin number agl250 function
igloo low power flash fpgas revision 23 4-37 vq100 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/pr oducts/solutions/package/docs.aspx . note: this is the top view of the package. 1 100
package pin assignments 4-38 revision 23 vq100 pin number agl030 function 1gnd 2 io82rsb1 3 io81rsb1 4 io80rsb1 5 io79rsb1 6 io78rsb1 7 io77rsb1 8 io76rsb1 9gnd 10 io75rsb1 11 io74rsb1 12 gec0/io73rsb1 13 gea0/io72rsb1 14 geb0/io71rsb1 15 io70rsb1 16 io69rsb1 17 vcc 18 vccib1 19 io68rsb1 20 io67rsb1 21 io66rsb1 22 io65rsb1 23 io64rsb1 24 io63rsb1 25 io62rsb1 26 io61rsb1 27 ff/io60rsb1 28 io59rsb1 29 io58rsb1 30 io57rsb1 31 io56rsb1 32 io55rsb1 33 io54rsb1 34 io53rsb1 35 io52rsb1 36 io51rsb1 37 vcc 38 gnd 39 vccib1 40 io49rsb1 41 io47rsb1 42 io46rsb1 43 io45rsb1 44 io44rsb1 45 io43rsb1 46 io42rsb1 47 tck 48 tdi 49 tms 50 nc 51 gnd 52 vpump 53 nc 54 tdo 55 trst 56 vjtag 57 io41rsb0 58 io40rsb0 59 io39rsb0 60 io38rsb0 61 io37rsb0 62 io36rsb0 63 gdb0/io34rsb0 64 gda0/io33rsb0 65 gdc0/io32rsb0 66 vccib0 67 gnd 68 vcc 69 io31rsb0 70 io30rsb0 71 io29rsb0 72 io28rsb0 vq100 pin number agl030 function 73 io27rsb0 74 io26rsb0 75 io25rsb0 76 io24rsb0 77 io23rsb0 78 io22rsb0 79 io21rsb0 80 io20rsb0 81 io19rsb0 82 io18rsb0 83 io17rsb0 84 io16rsb0 85 io15rsb0 86 io14rsb0 87 vccib0 88 gnd 89 vcc 90 io12rsb0 91 io10rsb0 92 io08rsb0 93 io07rsb0 94 io06rsb0 95 io05rsb0 96 io04rsb0 97 io03rsb0 98 io02rsb0 99 io01rsb0 100 io00rsb0 vq100 pin number agl030 function
igloo low power flash fpgas revision 23 4-39 vq100 pin number agl060 function 1gnd 2 gaa2/io51rsb1 3 io52rsb1 4 gab2/io53rsb1 5 io95rsb1 6 gac2/io94rsb1 7 io93rsb1 8 io92rsb1 9gnd 10 gfb1/io87rsb1 11 gfb0/io86rsb1 12 vcomplf 13 gfa0/io85rsb1 14 vccplf 15 gfa1/io84rsb1 16 gfa2/io83rsb1 17 vcc 18 vccib1 19 gec1/io77rsb1 20 geb1/io75rsb1 21 geb0/io74rsb1 22 gea1/io73rsb1 23 gea0/io72rsb1 24 vmv1 25 gndq 26 gea2/io71rsb1 27 ff/geb2/io70rsb1 28 gec2/io69rsb1 29 io68rsb1 30 io67rsb1 31 io66rsb1 32 io65rsb1 33 io64rsb1 34 io63rsb1 35 io62rsb1 36 io61rsb1 37 vcc 38 gnd 39 vccib1 40 io60rsb1 41 io59rsb1 42 io58rsb1 43 io57rsb1 44 gdc2/io56rsb1 45 gdb2/io55rsb1 46 gda2/io54rsb1 47 tck 48 tdi 49 tms 50 vmv1 51 gnd 52 vpump 53 nc 54 tdo 55 trst 56 vjtag 57 gda1/io49rsb0 58 gdc0/io46rsb0 59 gdc1/io45rsb0 60 gcc2/io43rsb0 61 gcb2/io42rsb0 62 gca0/io40rsb0 63 gca1/io39rsb0 64 gcc0/io36rsb0 65 gcc1/io35rsb0 66 vccib0 67 gnd 68 vcc 69 io31rsb0 70 gbc2/io29rsb0 71 gbb2/io27rsb0 72 io26rsb0 vq100 pin number agl060 function 73 gba2/io25rsb0 74 vmv0 75 gndq 76 gba1/io24rsb0 77 gba0/io23rsb0 78 gbb1/io22rsb0 79 gbb0/io21rsb0 80 gbc1/io20rsb0 81 gbc0/io19rsb0 82 io18rsb0 83 io17rsb0 84 io15rsb0 85 io13rsb0 86 io11rsb0 87 vccib0 88 gnd 89 vcc 90 io10rsb0 91 io09rsb0 92 io08rsb0 93 gac1/io07rsb0 94 gac0/io06rsb0 95 gab1/io05rsb0 96 gab0/io04rsb0 97 gaa1/io03rsb0 98 gaa0/io02rsb0 99 io01rsb0 100 io00rsb0 vq100 pin number agl060 function
package pin assignments 4-40 revision 23 vq100 pin number agl125 function 1gnd 2 gaa2/io67rsb1 3 io68rsb1 4 gab2/io69rsb1 5 io132rsb1 6 gac2/io131rsb1 7 io130rsb1 8 io129rsb1 9gnd 10 gfb1/io124rsb1 11 gfb0/io123rsb1 12 vcomplf 13 gfa0/io122rsb1 14 vccplf 15 gfa1/io121rsb1 16 gfa2/io120rsb1 17 vcc 18 vccib1 19 gec0/io111rsb1 20 geb1/io110rsb1 21 geb0/io109rsb1 22 gea1/io108rsb1 23 gea0/io107rsb1 24 vmv1 25 gndq 26 gea2/io106rsb1 27 ff/geb2/io105rsb 1 28 gec2/io104rsb1 29 io102rsb1 30 io100rsb1 31 io99rsb1 32 io97rsb1 33 io96rsb1 34 io95rsb1 35 io94rsb1 36 io93rsb1 37 vcc 38 gnd 39 vccib1 40 io87rsb1 41 io84rsb1 42 io81rsb1 43 io75rsb1 44 gdc2/io72rsb1 45 gdb2/io71rsb1 46 gda2/io70rsb1 47 tck 48 tdi 49 tms 50 vmv1 51 gnd 52 vpump 53 nc 54 tdo 55 trst 56 vjtag 57 gda1/io65rsb0 58 gdc0/io62rsb0 59 gdc1/io61rsb0 60 gcc2/io59rsb0 61 gcb2/io58rsb0 62 gca0/io56rsb0 63 gca1/io55rsb0 64 gcc0/io52rsb0 65 gcc1/io51rsb0 66 vccib0 67 gnd 68 vcc 69 io47rsb0 70 gbc2/io45rsb0 71 gbb2/io43rsb0 vq100 pin number agl125 function 72 io42rsb0 73 gba2/io41rsb0 74 vmv0 75 gndq 76 gba1/io40rsb0 77 gba0/io39rsb0 78 gbb1/io38rsb0 79 gbb0/io37rsb0 80 gbc1/io36rsb0 81 gbc0/io35rsb0 82 io32rsb0 83 io28rsb0 84 io25rsb0 85 io22rsb0 86 io19rsb0 87 vccib0 88 gnd 89 vcc 90 io15rsb0 91 io13rsb0 92 io11rsb0 93 io09rsb0 94 io07rsb0 95 gac1/io05rsb0 96 gac0/io04rsb0 97 gab1/io03rsb0 98 gab0/io02rsb0 99 gaa1/io01rsb0 100 gaa0/io00rsb0 vq100 pin number agl125 function
igloo low power flash fpgas revision 23 4-41 vq100 pin number agl250 function 1gnd 2 gaa2/io118udb3 3 io118vdb3 4 gab2/io117udb3 5 io117vdb3 6 gac2/io116udb3 7 io116vdb3 8 io112psb3 9gnd 10 gfb1/io109pdb3 11 gfb0/io109ndb3 12 vcomplf 13 gfa0/io108npb3 14 vccplf 15 gfa1/io108ppb3 16 gfa2/io107psb3 17 vcc 18 vccib3 19 gfc2/io105psb3 20 gec1/io100pdb3 21 gec0/io100ndb3 22 gea1/io98pdb3 23 gea0/io98ndb3 24 vmv3 25 gndq 26 gea2/io97rsb2 27 ff/geb2/io96rsb2 28 gec2/io95rsb2 29 io93rsb2 30 io92rsb2 31 io91rsb2 32 io90rsb2 33 io88rsb2 34 io86rsb2 35 io85rsb2 36 io84rsb2 37 vcc 38 gnd 39 vccib2 40 io77rsb2 41 io74rsb2 42 io71rsb2 43 gdc2/io63rsb2 44 gdb2/io62rsb2 45 gda2/io61rsb2 46 gndq 47 tck 48 tdi 49 tms 50 vmv2 51 gnd 52 vpump 53 nc 54 tdo 55 trst 56 vjtag 57 gda1/io60usb1 58 gdc0/io58vdb1 59 gdc1/io58udb1 60 io52ndb1 61 gcb2/io52pdb1 62 gca1/io50pdb1 63 gca0/io50ndb1 64 gcc0/io48ndb1 65 gcc1/io48pdb1 66 vccib1 67 gnd 68 vcc 69 io43ndb1 70 gbc2/io43pdb1 71 gbb2/io42psb1 72 io41ndb1 vq100 pin number agl250 function 73 gba2/io41pdb1 74 vmv1 75 gndq 76 gba1/io40rsb0 77 gba0/io39rsb0 78 gbb1/io38rsb0 79 gbb0/io37rsb0 80 gbc1/io36rsb0 81 gbc0/io35rsb0 82 io29rsb0 83 io27rsb0 84 io25rsb0 85 io23rsb0 86 io21rsb0 87 vccib0 88 gnd 89 vcc 90 io15rsb0 91 io13rsb0 92 io11rsb0 93 gac1/io05rsb0 94 gac0/io04rsb0 95 gab1/io03rsb0 96 gab0/io02rsb0 97 gaa1/io01rsb0 98 gaa0/io00rsb0 99 gndq 100 vmv0 vq100 pin number agl250 function
package pin assignments 4-42 revision 23 fg144 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/pr oducts/solutions/package/docs.aspx . note: this is the bottom view of the package. 1 2 3 4 5 6 7 8 9 10 11 12 a b c d e f g h j k l m a1 ball pad corner
igloo low power flash fpgas revision 23 4-43 fg144 pin number agl060 function a1 gndq a2 vmv0 a3 gab0/io04rsb0 a4 gab1/io05rsb0 a5 io08rsb0 a6 gnd a7 io11rsb0 a8 vcc a9 io16rsb0 a10 gba0/io23rsb0 a11 gba1/io24rsb0 a12 gndq b1 gab2/io53rsb1 b2 gnd b3 gaa0/io02rsb0 b4 gaa1/io03rsb0 b5 io00rsb0 b6 io10rsb0 b7 io12rsb0 b8 io14rsb0 b9 gbb0/io21rsb0 b10 gbb1/io22rsb0 b11 gnd b12 vmv0 c1 io95rsb1 c2 gfa2/io83rsb1 c3 gac2/io94rsb1 c4 vcc c5 io01rsb0 c6 io09rsb0 c7 io13rsb0 c8 io15rsb0 c9 io17rsb0 c10 gba2/io25rsb0 c11 io26rsb0 c12 gbc2/io29rsb0 d1 io91rsb1 d2 io92rsb1 d3 io93rsb1 d4 gaa2/io51rsb1 d5 gac0/io06rsb0 d6 gac1/io07rsb0 d7 gbc0/io19rsb0 d8 gbc1/io20rsb0 d9 gbb2/io27rsb0 d10 io18rsb0 d11 io28rsb0 d12 gcb1/io37rsb0 e1 vcc e2 gfc0/io88rsb1 e3 gfc1/io89rsb1 e4 vccib1 e5 io52rsb1 e6 vccib0 e7 vccib0 e8 gcc1/io35rsb0 e9 vccib0 e10 vcc e11 gca0/io40rsb0 e12 io30rsb0 f1 gfb0/io86rsb1 f2 vcomplf f3 gfb1/io87rsb1 f4 io90rsb1 f5 gnd f6 gnd f7 gnd f8 gcc0/io36rsb0 f9 gcb0/io38rsb0 f10 gnd f11 gca1/io39rsb0 f12 gca2/io41rsb0 fg144 pin number agl060 function g1 gfa1/io84rsb1 g2 gnd g3 vccplf g4 gfa0/io85rsb1 g5 gnd g6 gnd g7 gnd g8 gdc1/io45rsb0 g9 io32rsb0 g10 gcc2/io43rsb0 g11 io31rsb0 g12 gcb2/io42rsb0 h1 vcc h2 gfb2/io82rsb1 h3 gfc2/io81rsb1 h4 gec1/io77rsb1 h5 vcc h6 io34rsb0 h7 io44rsb0 h8 gdb2/io55rsb1 h9 gdc0/io46rsb0 h10 vccib0 h11 io33rsb0 h12 vcc j1 geb1/io75rsb1 j2 io78rsb1 j3 vccib1 j4 gec0/io76rsb1 j5 io79rsb1 j6 io80rsb1 j7 vcc j8 tck j9 gda2/io54rsb1 j10 tdo j11 gda1/io49rsb0 j12 gdb1/io47rsb0 fg144 pin number agl060 function
package pin assignments 4-44 revision 23 k1 geb0/io74rsb1 k2 gea1/io73rsb1 k3 gea0/io72rsb1 k4 gea2/io71rsb1 k5 io65rsb1 k6 io64rsb1 k7 gnd k8 io57rsb1 k9 gdc2/io56rsb1 k10 gnd k11 gda0/io50rsb0 k12 gdb0/io48rsb0 l1 gnd l2 vmv1 l3 ff/geb2/io70rsb1 l4 io67rsb1 l5 vccib1 l6 io62rsb1 l7 io59rsb1 l8 io58rsb1 l9 tms l10 vjtag l11 vmv1 l12 trst m1 gndq m2 gec2/io69rsb1 m3 io68rsb1 m4 io66rsb1 m5 io63rsb1 m6 io61rsb1 m7 io60rsb1 m8 nc m9 tdi m10 vccib1 m11 vpump m12 gndq fg144 pin number agl060 function
igloo low power flash fpgas revision 23 4-45 fg144 pin number agl125 function a1 gndq a2 vmv0 a3 gab0/io02rsb0 a4 gab1/io03rsb0 a5 io11rsb0 a6 gnd a7 io18rsb0 a8 vcc a9 io25rsb0 a10 gba0/io39rsb0 a11 gba1/io40rsb0 a12 gndq b1 gab2/io69rsb1 b2 gnd b3 gaa0/io00rsb0 b4 gaa1/io01rsb0 b5 io08rsb0 b6 io14rsb0 b7 io19rsb0 b8 io22rsb0 b9 gbb0/io37rsb0 b10 gbb1/io38rsb0 b11 gnd b12 vmv0 c1 io132rsb1 c2 gfa2/io120rsb1 c3 gac2/io131rsb1 c4 vcc c5 io10rsb0 c6 io12rsb0 c7 io21rsb0 c8 io24rsb0 c9 io27rsb0 c10 gba2/io41rsb0 c11 io42rsb0 c12 gbc2/io45rsb0 d1 io128rsb1 d2 io129rsb1 d3 io130rsb1 d4 gaa2/io67rsb1 d5 gac0/io04rsb0 d6 gac1/io05rsb0 d7 gbc0/io35rsb0 d8 gbc1/io36rsb0 d9 gbb2/io43rsb0 d10 io28rsb0 d11 io44rsb0 d12 gcb1/io53rsb0 e1 vcc e2 gfc0/io125rsb1 e3 gfc1/io126rsb1 e4 vccib1 e5 io68rsb1 e6 vccib0 e7 vccib0 e8 gcc1/io51rsb0 e9 vccib0 e10 vcc e11 gca0/io56rsb0 e12 io46rsb0 f1 gfb0/io123rsb1 f2 vcomplf f3 gfb1/io124rsb1 f4 io127rsb1 f5 gnd f6 gnd f7 gnd f8 gcc0/io52rsb0 f9 gcb0/io54rsb0 f10 gnd f11 gca1/io55rsb0 f12 gca2/io57rsb0 fg144 pin number agl125 function g1 gfa1/io121rsb1 g2 gnd g3 vccplf g4 gfa0/io122rsb1 g5 gnd g6 gnd g7 gnd g8 gdc1/io61rsb0 g9 io48rsb0 g10 gcc2/io59rsb0 g11 io47rsb0 g12 gcb2/io58rsb0 h1 vcc h2 gfb2/io119rsb1 h3 gfc2/io118rsb1 h4 gec1/io112rsb1 h5 vcc h6 io50rsb0 h7 io60rsb0 h8 gdb2/io71rsb1 h9 gdc0/io62rsb0 h10 vccib0 h11 io49rsb0 h12 vcc j1 geb1/io110rsb1 j2 io115rsb1 j3 vccib1 j4 gec0/io111rsb1 j5 io116rsb1 j6 io117rsb1 j7 vcc j8 tck j9 gda2/io70rsb1 j10 tdo j11 gda1/io65rsb0 j12 gdb1/io63rsb0 fg144 pin number agl125 function
package pin assignments 4-46 revision 23 k1 geb0/io109rsb1 k2 gea1/io108rsb1 k3 gea0/io107rsb1 k4 gea2/io106rsb1 k5 io100rsb1 k6 io98rsb1 k7 gnd k8 io73rsb1 k9 gdc2/io72rsb1 k10 gnd k11 gda0/io66rsb0 k12 gdb0/io64rsb0 l1 gnd l2 vmv1 l3 ff/geb2/io105rsb1 l4 io102rsb1 l5 vccib1 l6 io95rsb1 l7 io85rsb1 l8 io74rsb1 l9 tms l10 vjtag l11 vmv1 l12 trst m1 gndq m2 gec2/io104rsb1 m3 io103rsb1 m4 io101rsb1 m5 io97rsb1 m6 io94rsb1 m7 io86rsb1 m8 io75rsb1 m9 tdi m10 vccib1 m11 vpump m12 gndq fg144 pin number agl125 function
igloo low power flash fpgas revision 23 4-47 fg144 pin number agl250 function a1 gndq a2 vmv0 a3 gab0/io02rsb0 a4 gab1/io03rsb0 a5 io16rsb0 a6 gnd a7 io29rsb0 a8 vcc a9 io33rsb0 a10 gba0/io39rsb0 a11 gba1/io40rsb0 a12 gndq b1 gab2/io117udb3 b2 gnd b3 gaa0/io00rsb0 b4 gaa1/io01rsb0 b5 io14rsb0 b6 io19rsb0 b7 io22rsb0 b8 io30rsb0 b9 gbb0/io37rsb0 b10 gbb1/io38rsb0 b11 gnd b12 vmv1 c1 io117vdb3 c2 gfa2/io107ppb3 c3 gac2/io116udb3 c4 vcc c5 io12rsb0 c6 io17rsb0 c7 io24rsb0 c8 io31rsb0 c9 io34rsb0 c10 gba2/io41pdb1 c11 io41ndb1 c12 gbc2/io43ppb1 d1 io112ndb3 d2 io112pdb3 d3 io116vdb3 d4 gaa2/io118upb3 d5 gac0/io04rsb0 d6 gac1/io05rsb0 d7 gbc0/io35rsb0 d8 gbc1/io36rsb0 d9 gbb2/io42pdb1 d10 io42ndb1 d11 io43npb1 d12 gcb1/io49ppb1 e1 vcc e2 gfc0/io110ndb3 e3 gfc1/io110pdb3 e4 vccib3 e5 io118vpb3 e6 vccib0 e7 vccib0 e8 gcc1/io48pdb1 e9 vccib1 e10 vcc e11 gca0/io50ndb1 e12 io51ndb1 f1 gfb0/io109npb3 f2 vcomplf f3 gfb1/io109ppb3 f4 io107npb3 f5 gnd f6 gnd f7 gnd f8 gcc0/io48ndb1 f9 gcb0/io49npb1 f10 gnd f11 gca1/io50pdb1 f12 gca2/io51pdb1 fg144 pin number agl250 function g1 gfa1/io108ppb3 g2 gnd g3 vccplf g4 gfa0/io108npb3 g5 gnd g6 gnd g7 gnd g8 gdc1/io58upb1 g9 io53ndb1 g10 gcc2/io53pdb1 g11 io52ndb1 g12 gcb2/io52pdb1 h1 vcc h2 gfb2/io106pdb3 h3 gfc2/io105psb3 h4 gec1/io100pdb3 h5 vcc h6 io79rsb2 h7 io65rsb2 h8 gdb2/io62rsb2 h9 gdc0/io58vpb1 h10 vccib1 h11 io54psb1 h12 vcc j1 geb1/io99pdb3 j2 io106ndb3 j3 vccib3 j4 gec0/io100ndb3 j5 io88rsb2 j6 io81rsb2 j7 vcc j8 tck j9 gda2/io61rsb2 j10 tdo j11 gda1/io60udb1 j12 gdb1/io59udb1 fg144 pin number agl250 function
package pin assignments 4-48 revision 23 k1 geb0/io99ndb3 k2 gea1/io98pdb3 k3 gea0/io98ndb3 k4 gea2/io97rsb2 k5 io90rsb2 k6 io84rsb2 k7 gnd k8 io66rsb2 k9 gdc2/io63rsb2 k10 gnd k11 gda0/io60vdb1 k12 gdb0/io59vdb1 l1 gnd l2 vmv3 l3 ff/geb2/io96rsb2 l4 io91rsb2 l5 vccib2 l6 io82rsb2 l7 io80rsb2 l8 io72rsb2 l9 tms l10 vjtag l11 vmv2 l12 trst m1 gndq m2 gec2/io95rsb2 m3 io92rsb2 m4 io89rsb2 m5 io87rsb2 m6 io85rsb2 m7 io78rsb2 m8 io76rsb2 m9 tdi m10 vccib2 m11 vpump m12 gndq fg144 pin number agl250 function
igloo low power flash fpgas revision 23 4-49 fg144 pin number agl400 function a1 gndq a2 vmv0 a3 gab0/io02rsb0 a4 gab1/io03rsb0 a5 io16rsb0 a6 gnd a7 io30rsb0 a8 vcc a9 io34rsb0 a10 gba0/io58rsb0 a11 gba1/io59rsb0 a12 gndq b1 gab2/io154udb3 b2 gnd b3 gaa0/io00rsb0 b4 gaa1/io01rsb0 b5 io14rsb0 b6 io19rsb0 b7 io23rsb0 b8 io31rsb0 b9 gbb0/io56rsb0 b10 gbb1/io57rsb0 b11 gnd b12 vmv1 c1 io154vdb3 c2 gfa2/io144ppb3 c3 gac2/io153udb3 c4 vcc c5 io12rsb0 c6 io17rsb0 c7 io25rsb0 c8 io32rsb0 c9 io53rsb0 c10 gba2/io60pdb1 c11 io60ndb1 c12 gbc2/io62ppb1 d1 io149ndb3 d2 io149pdb3 d3 io153vdb3 d4 gaa2/io155upb3 d5 gac0/io04rsb0 d6 gac1/io05rsb0 d7 gbc0/io54rsb0 d8 gbc1/io55rsb0 d9 gbb2/io61pdb1 d10 io61ndb1 d11 io62npb1 d12 gcb1/io68ppb1 e1 vcc e2 gfc0/io147ndb3 e3 gfc1/io147pdb3 e4 vccib3 e5 io155vpb3 e6 vccib0 e7 vccib0 e8 gcc1/io67pdb1 e9 vccib1 e10 vcc e11 gca0/io69ndb1 e12 io70ndb1 f1 gfb0/io146npb3 f2 vcomplf f3 gfb1/io146ppb3 f4 io144npb3 f5 gnd f6 gnd f7 gnd f8 gcc0/io67ndb1 f9 gcb0/io68npb1 f10 gnd f11 gca1/io69pdb1 f12 gca2/io70pdb1 fg144 pin number agl400 function g1 gfa1/io145ppb3 g2 gnd g3 vccplf g4 gfa0/io145npb3 g5 gnd g6 gnd g7 gnd g8 gdc1/io77upb1 g9 io72ndb1 g10 gcc2/io72pdb1 g11 io71ndb1 g12 gcb2/io71pdb1 h1 vcc h2 gfb2/io143pdb3 h3 gfc2/io142psb3 h4 gec1/io137pdb3 h5 vcc h6 io75pdb1 h7 io75ndb1 h8 gdb2/io81rsb2 h9 gdc0/io77vpb1 h10 vccib1 h11 io73psb1 h12 vcc j1 geb1/io136pdb3 j2 io143ndb3 j3 vccib3 j4 gec0/io137ndb3 j5 io125rsb2 j6 io116rsb2 j7 vcc j8 tck j9 gda2/io80rsb2 j10 tdo j11 gda1/io79udb1 j12 gdb1/io78udb1 fg144 pin number agl400 function
package pin assignments 4-50 revision 23 k1 geb0/io136ndb3 k2 gea1/io135pdb3 k3 gea0/io135ndb3 k4 gea2/io134rsb2 k5 io127rsb2 k6 io121rsb2 k7 gnd k8 io104rsb2 k9 gdc2/io82rsb2 k10 gnd k11 gda0/io79vdb1 k12 gdb0/io78vdb1 l1 gnd l2 vmv3 l3 ff/geb2/io133rsb2 l4 io128rsb2 l5 vccib2 l6 io119rsb2 l7 io114rsb2 l8 io110rsb2 l9 tms l10 vjtag l11 vmv2 l12 trst m1 gndq m2 gec2/io132rsb2 m3 io129rsb2 m4 io126rsb2 m5 io124rsb2 m6 io122rsb2 m7 io117rsb2 m8 io115rsb2 m9 tdi m10 vccib2 m11 vpump m12 gndq fg144 pin number agl400 function
igloo low power flash fpgas revision 23 4-51 fg144 pin number agl600 function a1 gndq a2 vmv0 a3 gab0/io02rsb0 a4 gab1/io03rsb0 a5 io10rsb0 a6 gnd a7 io34rsb0 a8 vcc a9 io50rsb0 a10 gba0/io58rsb0 a11 gba1/io59rsb0 a12 gndq b1 gab2/io173pdb3 b2 gnd b3 gaa0/io00rsb0 b4 gaa1/io01rsb0 b5 io13rsb0 b6 io19rsb0 b7 io31rsb0 b8 io39rsb0 b9 gbb0/io56rsb0 b10 gbb1/io57rsb0 b11 gnd b12 vmv1 c1 io173ndb3 c2 gfa2/io161ppb3 c3 gac2/io172pdb3 c4 vcc c5 io16rsb0 c6 io25rsb0 c7 io28rsb0 c8 io42rsb0 c9 io45rsb0 c10 gba2/io60pdb1 c11 io60ndb1 c12 gbc2/io62ppb1 d1 io169pdb3 d2 io169ndb3 d3 io172ndb3 d4 gaa2/io174ppb3 d5 gac0/io04rsb0 d6 gac1/io05rsb0 d7 gbc0/io54rsb0 d8 gbc1/io55rsb0 d9 gbb2/io61pdb1 d10 io61ndb1 d11 io62npb1 d12 gcb1/io70ppb1 e1 vcc e2 gfc0/io164ndb3 e3 gfc1/io164pdb3 e4 vccib3 e5 io174npb3 e6 vccib0 e7 vccib0 e8 gcc1/io69pdb1 e9 vccib1 e10 vcc e11 gca0/io71ndb1 e12 io72ndb1 f1 gfb0/io163npb3 f2 vcomplf f3 gfb1/io163ppb3 f4 io161npb3 f5 gnd f6 gnd f7 gnd f8 gcc0/io69ndb1 f9 gcb0/io70npb1 f10 gnd f11 gca1/io71pdb1 f12 gca2/io72pdb1 fg144 pin number agl600 function g1 gfa1/io162ppb3 g2 gnd g3 vccplf g4 gfa0/io162npb3 g5 gnd g6 gnd g7 gnd g8 gdc1/io86ppb1 g9 io74ndb1 g10 gcc2/io74pdb1 g11 io73ndb1 g12 gcb2/io73pdb1 h1 vcc h2 gfb2/io160pdb3 h3 gfc2/io159psb3 h4 gec1/io146pdb3 h5 vcc h6 io80pdb1 h7 io80ndb1 h8 gdb2/io90rsb2 h9 gdc0/io86npb1 h10 vccib1 h11 io84psb1 h12 vcc j1 geb1/io145pdb3 j2 io160ndb3 j3 vccib3 j4 gec0/io146ndb3 j5 io129rsb2 j6 io131rsb2 j7 vcc j8 tck j9 gda2/io89rsb2 j10 tdo j11 gda1/io88pdb1 j12 gdb1/io87pdb1 fg144 pin number agl600 function
package pin assignments 4-52 revision 23 k1 geb0/io145ndb3 k2 gea1/io144pdb3 k3 gea0/io144ndb3 k4 gea2/io143rsb2 k5 io119rsb2 k6 io111rsb2 k7 gnd k8 io94rsb2 k9 gdc2/io91rsb2 k10 gnd k11 gda0/io88ndb1 k12 gdb0/io87ndb1 l1 gnd l2 vmv3 l3 ff/geb2/io142rsb2 l4 io136rsb2 l5 vccib2 l6 io115rsb2 l7 io103rsb2 l8 io97rsb2 l9 tms l10 vjtag l11 vmv2 l12 trst m1 gndq m2 gec2/io141rsb2 m3 io138rsb2 m4 io123rsb2 m5 io126rsb2 m6 io134rsb2 m7 io108rsb2 m8 io99rsb2 m9 tdi m10 vccib2 m11 vpump m12 gndq fg144 pin number agl600 function
igloo low power flash fpgas revision 23 4-53 fg144 pin number agl1000 function a1 gndq a2 vmv0 a3 gab0/io02rsb0 a4 gab1/io03rsb0 a5 io10rsb0 a6 gnd a7 io44rsb0 a8 vcc a9 io69rsb0 a10 gba0/io76rsb0 a11 gba1/io77rsb0 a12 gndq b1 gab2/io224pdb3 b2 gnd b3 gaa0/io00rsb0 b4 gaa1/io01rsb0 b5 io13rsb0 b6 io26rsb0 b7 io35rsb0 b8 io60rsb0 b9 gbb0/io74rsb0 b10 gbb1/io75rsb0 b11 gnd b12 vmv1 c1 io224ndb3 c2 gfa2/io206ppb3 c3 gac2/io223pdb3 c4 vcc c5 io16rsb0 c6 io29rsb0 c7 io32rsb0 c8 io63rsb0 c9 io66rsb0 c10 gba2/io78pdb1 c11 io78ndb1 c12 gbc2/io80ppb1 d1 io213pdb3 d2 io213ndb3 d3 io223ndb3 d4 gaa2/io225ppb3 d5 gac0/io04rsb0 d6 gac1/io05rsb0 d7 gbc0/io72rsb0 d8 gbc1/io73rsb0 d9 gbb2/io79pdb1 d10 io79ndb1 d11 io80npb1 d12 gcb1/io92ppb1 e1 vcc e2 gfc0/io209ndb3 e3 gfc1/io209pdb3 e4 vccib3 e5 io225npb3 e6 vccib0 e7 vccib0 e8 gcc1/io91pdb1 e9 vccib1 e10 vcc e11 gca0/io93ndb1 e12 io94ndb1 f1 gfb0/io208npb3 f2 vcomplf f3 gfb1/io208ppb3 f4 io206npb3 f5 gnd f6 gnd f7 gnd f8 gcc0/io91ndb1 f9 gcb0/io92npb1 f10 gnd f11 gca1/io93pdb1 f12 gca2/io94pdb1 fg144 pin number agl1000 function g1 gfa1/io207ppb3 g2 gnd g3 vccplf g4 gfa0/io207npb3 g5 gnd g6 gnd g7 gnd g8 gdc1/io111ppb1 g9 io96ndb1 g10 gcc2/io96pdb1 g11 io95ndb1 g12 gcb2/io95pdb1 h1 vcc h2 gfb2/io205pdb3 h3 gfc2/io204psb3 h4 gec1/io190pdb3 h5 vcc h6 io105pdb1 h7 io105ndb1 h8 gdb2/io115rsb2 h9 gdc0/io111npb1 h10 vccib1 h11 io101psb1 h12 vcc j1 geb1/io189pdb3 j2 io205ndb3 j3 vccib3 j4 gec0/io190ndb3 j5 io160rsb2 j6 io157rsb2 j7 vcc j8 tck j9 gda2/io114rsb2 j10 tdo j11 gda1/io113pdb1 j12 gdb1/io112pdb1 fg144 pin number agl1000 function
package pin assignments 4-54 revision 23 k1 geb0/io189ndb3 k2 gea1/io188pdb3 k3 gea0/io188ndb3 k4 gea2/io187rsb2 k5 io169rsb2 k6 io152rsb2 k7 gnd k8 io117rsb2 k9 gdc2/io116rsb2 k10 gnd k11 gda0/io113ndb1 k12 gdb0/io112ndb1 l1 gnd l2 vmv3 l3 ff/geb2/io186rsb2 l4 io172rsb2 l5 vccib2 l6 io153rsb2 l7 io144rsb2 l8 io140rsb2 l9 tms l10 vjtag l11 vmv2 l12 trst m1 gndq m2 gec2/io185rsb2 m3 io173rsb2 m4 io168rsb2 m5 io161rsb2 m6 io156rsb2 m7 io145rsb2 m8 io141rsb2 m9 tdi m10 vccib2 m11 vpump m12 gndq fg144 pin number agl1000 function
igloo low power flash fpgas revision 23 4-55 fg256 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/pr oducts/solutions/package/docs.aspx . note: this is the bottom view of the package. 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 16 c e g j l n r d f h k m p t b a a1 ball pad corner
package pin assignments 4-56 revision 23 fg256 pin number agl400 function a1 gnd a2 gaa0/io00rsb0 a3 gaa1/io01rsb0 a4 gab0/io02rsb0 a5 io16rsb0 a6 io17rsb0 a7 io22rsb0 a8 io28rsb0 a9 io34rsb0 a10 io37rsb0 a11 io41rsb0 a12 io43rsb0 a13 gbb1/io57rsb0 a14 gba0/io58rsb0 a15 gba1/io59rsb0 a16 gnd b1 gab2/io154udb3 b2 gaa2/io155udb3 b3 io12rsb0 b4 gab1/io03rsb0 b5 io13rsb0 b6 io14rsb0 b7 io21rsb0 b8 io27rsb0 b9 io32rsb0 b10 io38rsb0 b11 io42rsb0 b12 gbc1/io55rsb0 b13 gbb0/io56rsb0 b14 io44rsb0 b15 gba2/io60pdb1 b16 io60ndb1 c1 io154vdb3 c2 io155vdb3 c3 io11rsb0 c4 io07rsb0 c5 gac0/io04rsb0 c6 gac1/io05rsb0 c7 io20rsb0 c8 io24rsb0 c9 io33rsb0 c10 io39rsb0 c11 io45rsb0 c12 gbc0/io54rsb0 c13 io48rsb0 c14 vmv0 c15 io61npb1 c16 io63pdb1 d1 io151vdb3 d2 io151udb3 d3 gac2/io153udb3 d4 io06rsb0 d5 gndq d6 io10rsb0 d7 io19rsb0 d8 io26rsb0 d9 io30rsb0 d10 io40rsb0 d11 io46rsb0 d12 gndq d13 io47rsb0 d14 gbb2/io61ppb1 d15 io53rsb0 d16 io63ndb1 e1 io150pdb3 e2 io08rsb0 e3 io153vdb3 e4 io152vdb3 e5 vmv0 e6 vccib0 e7 vccib0 e8 io25rsb0 e9 io31rsb0 e10 vccib0 e11 vccib0 e12 vmv1 fg256 pin number agl400 function e13 gbc2/io62pdb1 e14 io65rsb1 e15 io52rsb0 e16 io66pdb1 f1 io150ndb3 f2 io149npb3 f3 io09rsb0 f4 io152udb3 f5 vccib3 f6 gnd f7 vcc f8 vcc f9 vcc f10 vcc f11 gnd f12 vccib1 f13 io62ndb1 f14 io49rsb0 f15 io64ppb1 f16 io66ndb1 g1 io148ndb3 g2 io148pdb3 g3 io149ppb3 g4 gfc1/io147ppb3 g5 vccib3 g6 vcc g7 gnd g8 gnd g9 gnd g10 gnd g11 vcc g12 vccib1 g13 gcc1/io67ppb1 g14 io64npb1 g15 io73pdb1 g16 io73ndb1 h1 gfb0/io146npb3 h2 gfa0/io145ndb3 fg256 pin number agl400 function
igloo low power flash fpgas revision 23 4-57 h3 gfb1/io146ppb3 h4 vcomplf h5 gfc0/io147npb3 h6 vcc h7 gnd h8 gnd h9 gnd h10 gnd h11 vcc h12 gcc0/io67npb1 h13 gcb1/io68ppb1 h14 gca0/io69npb1 h15 nc h16 gcb0/io68npb1 j1 gfa2/io144ppb3 j2 gfa1/io145pdb3 j3 vccplf j4 io143ndb3 j5 gfb2/io143pdb3 j6 vcc j7 gnd j8 gnd j9 gnd j10 gnd j11 vcc j12 gcb2/io71ppb1 j13 gca1/io69ppb1 j14 gcc2/io72ppb1 j15 nc j16 gca2/io70pdb1 k1 gfc2/io142pdb3 k2 io144npb3 k3 io141ppb3 k4 io120rsb2 k5 vccib3 k6 vcc k7 gnd k8 gnd fg256 pin number agl400 function k9 gnd k10 gnd k11 vcc k12 vccib1 k13 io71npb1 k14 io74rsb1 k15 io72npb1 k16 io70ndb1 l1 io142ndb3 l2 io141npb3 l3 io125rsb2 l4 io139rsb3 l5 vccib3 l6 gnd l7 vcc l8 vcc l9 vcc l10 vcc l11 gnd l12 vccib1 l13 gdb0/io78vpb1 l14 io76vdb1 l15 io76udb1 l16 io75pdb1 m1 io140pdb3 m2 io130rsb2 m3 io138npb3 m4 gec0/io137npb3 m5 vmv3 m6 vccib2 m7 vccib2 m8 io108rsb2 m9 io101rsb2 m10 vccib2 m11 vccib2 m12 vmv2 m13 io83rsb2 m14 gdb1/io78upb1 fg256 pin number agl400 function m15 gdc1/io77udb1 m16 io75ndb1 n1 io140ndb3 n2 io138ppb3 n3 gec1/io137ppb3 n4 io131rsb2 n5 gndq n6 gea2/io134rsb2 n7 io117rsb2 n8 io111rsb2 n9 io99rsb2 n10 io94rsb2 n11 io87rsb2 n12 gndq n13 io93rsb2 n14 vjtag n15 gdc0/io77vdb1 n16 gda1/io79udb1 p1 geb1/io136pdb3 p2 geb0/io136ndb3 p3 vmv2 p4 io129rsb2 p5 io128rsb2 p6 io122rsb2 p7 io115rsb2 p8 io110rsb2 p9 io98rsb2 p10 io95rsb2 p11 io88rsb2 p12 io84rsb2 p13 tck p14 vpump p15 trst p16 gda0/io79vdb1 r1 gea1/io135pdb3 r2 gea0/io135ndb3 r3 io127rsb2 r4 gec2/io132rsb2 fg256 pin number agl400 function
package pin assignments 4-58 revision 23 r5 io123rsb2 r6 io118rsb2 r7 io112rsb2 r8 io106rsb2 r9 io100rsb2 r10 io96rsb2 r11 io89rsb2 r12 io85rsb2 r13 gdb2/io81rsb2 r14 tdi r15 nc r16 tdo t1 gnd t2 io126rsb2 t3 ff/geb2/io133rsb2 t4 io124rsb2 t5 io116rsb2 t6 io113rsb2 t7 io107rsb2 t8 io105rsb2 t9 io102rsb2 t10 io97rsb2 t11 io92rsb2 t12 gdc2/io82rsb2 t13 io86rsb2 t14 gda2/io80rsb2 t15 tms t16 gnd fg256 pin number agl400 function
igloo low power flash fpgas revision 23 4-59 fg256 pin number agl600 function a1 gnd a2 gaa0/io00rsb0 a3 gaa1/io01rsb0 a4 gab0/io02rsb0 a5 io11rsb0 a6 io16rsb0 a7 io18rsb0 a8 io28rsb0 a9 io34rsb0 a10 io37rsb0 a11 io41rsb0 a12 io43rsb0 a13 gbb1/io57rsb0 a14 gba0/io58rsb0 a15 gba1/io59rsb0 a16 gnd b1 gab2/io173pdb3 b2 gaa2/io174pdb3 b3 gndq b4 gab1/io03rsb0 b5 io13rsb0 b6 io14rsb0 b7 io21rsb0 b8 io27rsb0 b9 io32rsb0 b10 io38rsb0 b11 io42rsb0 b12 gbc1/io55rsb0 b13 gbb0/io56rsb0 b14 io52rsb0 b15 gba2/io60pdb1 b16 io60ndb1 c1 io173ndb3 c2 io174ndb3 c3 vmv3 c4 io07rsb0 c5 gac0/io04rsb0 c6 gac1/io05rsb0 c7 io20rsb0 c8 io24rsb0 c9 io33rsb0 c10 io39rsb0 c11 io44rsb0 c12 gbc0/io54rsb0 c13 io51rsb0 c14 vmv0 c15 io61npb1 c16 io63pdb1 d1 io171ndb3 d2 io171pdb3 d3 gac2/io172pdb3 d4 io06rsb0 d5 gndq d6 io10rsb0 d7 io19rsb0 d8 io26rsb0 d9 io30rsb0 d10 io40rsb0 d11 io45rsb0 d12 gndq d13 io50rsb0 d14 gbb2/io61ppb1 d15 io53rsb0 d16 io63ndb1 e1 io166pdb3 e2 io167npb3 e3 io172ndb3 e4 io169ndb3 e5 vmv0 e6 vccib0 e7 vccib0 e8 io25rsb0 e9 io31rsb0 e10 vccib0 e11 vccib0 e12 vmv1 fg256 pin number agl600 function e13 gbc2/io62pdb1 e14 io67ppb1 e15 io64ppb1 e16 io66pdb1 f1 io166ndb3 f2 io168npb3 f3 io167ppb3 f4 io169pdb3 f5 vccib3 f6 gnd f7 vcc f8 vcc f9 vcc f10 vcc f11 gnd f12 vccib1 f13 io62ndb1 f14 io64npb1 f15 io65ppb1 f16 io66ndb1 g1 io165ndb3 g2 io165pdb3 g3 io168ppb3 g4 gfc1/io164ppb3 g5 vccib3 g6 vcc g7 gnd g8 gnd g9 gnd g10 gnd g11 vcc g12 vccib1 g13 gcc1/io69ppb1 g14 io65npb1 g15 io75pdb1 g16 io75ndb1 h1 gfb0/io163npb3 h2 gfa0/io162ndb3 fg256 pin number agl600 function
package pin assignments 4-60 revision 23 h3 gfb1/io163ppb3 h4 vcomplf h5 gfc0/io164npb3 h6 vcc h7 gnd h8 gnd h9 gnd h10 gnd h11 vcc h12 gcc0/io69npb1 h13 gcb1/io70ppb1 h14 gca0/io71npb1 h15 io67npb1 h16 gcb0/io70npb1 j1 gfa2/io161ppb3 j2 gfa1/io162pdb3 j3 vccplf j4 io160ndb3 j5 gfb2/io160pdb3 j6 vcc j7 gnd j8 gnd j9 gnd j10 gnd j11 vcc j12 gcb2/io73ppb1 j13 gca1/io71ppb1 j14 gcc2/io74ppb1 j15 io80ppb1 j16 gca2/io72pdb1 k1 gfc2/io159pdb3 k2 io161npb3 k3 io156ppb3 k4 io129rsb2 k5 vccib3 k6 vcc k7 gnd k8 gnd fg256 pin number agl600 function k9 gnd k10 gnd k11 vcc k12 vccib1 k13 io73npb1 k14 io80npb1 k15 io74npb1 k16 io72ndb1 l1 io159ndb3 l2 io156npb3 l3 io151ppb3 l4 io158psb3 l5 vccib3 l6 gnd l7 vcc l8 vcc l9 vcc l10 vcc l11 gnd l12 vccib1 l13 gdb0/io87npb1 l14 io85ndb1 l15 io85pdb1 l16 io84pdb1 m1 io150pdb3 m2 io151npb3 m3 io147npb3 m4 gec0/io146npb3 m5 vmv3 m6 vccib2 m7 vccib2 m8 io117rsb2 m9 io110rsb2 m10 vccib2 m11 vccib2 m12 vmv2 m13 io94rsb2 m14 gdb1/io87ppb1 fg256 pin number agl600 function m15 gdc1/io86pdb1 m16 io84ndb1 n1 io150ndb3 n2 io147ppb3 n3 gec1/io146ppb3 n4 io140rsb2 n5 gndq n6 gea2/io143rsb2 n7 io126rsb2 n8 io120rsb2 n9 io108rsb2 n10 io103rsb2 n11 io99rsb2 n12 gndq n13 io92rsb2 n14 vjtag n15 gdc0/io86ndb1 n16 gda1/io88pdb1 p1 geb1/io145pdb3 p2 geb0/io145ndb3 p3 vmv2 p4 io138rsb2 p5 io136rsb2 p6 io131rsb2 p7 io124rsb2 p8 io119rsb2 p9 io107rsb2 p10 io104rsb2 p11 io97rsb2 p12 vmv1 p13 tck p14 vpump p15 trst p16 gda0/io88ndb1 r1 gea1/io144pdb3 r2 gea0/io144ndb3 r3 io139rsb2 r4 gec2/io141rsb2 fg256 pin number agl600 function
igloo low power flash fpgas revision 23 4-61 r5 io132rsb2 r6 io127rsb2 r7 io121rsb2 r8 io114rsb2 r9 io109rsb2 r10 io105rsb2 r11 io98rsb2 r12 io96rsb2 r13 gdb2/io90rsb2 r14 tdi r15 gndq r16 tdo t1 gnd t2 io137rsb2 t3 ff/geb2/io142rsb2 t4 io134rsb2 t5 io125rsb2 t6 io123rsb2 t7 io118rsb2 t8 io115rsb2 t9 io111rsb2 t10 io106rsb2 t11 io102rsb2 t12 gdc2/io91rsb2 t13 io93rsb2 t14 gda2/io89rsb2 t15 tms t16 gnd fg256 pin number agl600 function
package pin assignments 4-62 revision 23 fg256 pin number agl1000 function a1 gnd a2 gaa0/io00rsb0 a3 gaa1/io01rsb0 a4 gab0/io02rsb0 a5 io16rsb0 a6 io22rsb0 a7 io28rsb0 a8 io35rsb0 a9 io45rsb0 a10 io50rsb0 a11 io55rsb0 a12 io61rsb0 a13 gbb1/io75rsb0 a14 gba0/io76rsb0 a15 gba1/io77rsb0 a16 gnd b1 gab2/io224pdb3 b2 gaa2/io225pdb3 b3 gndq b4 gab1/io03rsb0 b5 io17rsb0 b6 io21rsb0 b7 io27rsb0 b8 io34rsb0 b9 io44rsb0 b10 io51rsb0 b11 io57rsb0 b12 gbc1/io73rsb0 b13 gbb0/io74rsb0 b14 io71rsb0 b15 gba2/io78pdb1 b16 io81pdb1 c1 io224ndb3 c2 io225ndb3 c3 vmv3 c4 io11rsb0 c5 gac0/io04rsb0 c6 gac1/io05rsb0 c7 io25rsb0 c8 io36rsb0 c9 io42rsb0 c10 io49rsb0 c11 io56rsb0 c12 gbc0/io72rsb0 c13 io62rsb0 c14 vmv0 c15 io78ndb1 c16 io81ndb1 d1 io222ndb3 d2 io222pdb3 d3 gac2/io223pdb3 d4 io223ndb3 d5 gndq d6 io23rsb0 d7 io29rsb0 d8 io33rsb0 d9 io46rsb0 d10 io52rsb0 d11 io60rsb0 d12 gndq d13 io80ndb1 d14 gbb2/io79pdb1 d15 io79ndb1 d16 io82nsb1 e1 io217pdb3 e2 io218pdb3 e3 io221ndb3 e4 io221pdb3 e5 vmv0 e6 vccib0 e7 vccib0 e8 io38rsb0 e9 io47rsb0 e10 vccib0 e11 vccib0 e12 vmv1 fg256 pin number agl1000 function e13 gbc2/io80pdb1 e14 io83ppb1 e15 io86ppb1 e16 io87pdb1 f1 io217ndb3 f2 io218ndb3 f3 io216pdb3 f4 io216ndb3 f5 vccib3 f6 gnd f7 vcc f8 vcc f9 vcc f10 vcc f11 gnd f12 vccib1 f13 io83npb1 f14 io86npb1 f15 io90ppb1 f16 io87ndb1 g1 io210psb3 g2 io213ndb3 g3 io213pdb3 g4 gfc1/io209ppb3 g5 vccib3 g6 vcc g7 gnd g8 gnd g9 gnd g10 gnd g11 vcc g12 vccib1 g13 gcc1/io91ppb1 g14 io90npb1 g15 io88pdb1 g16 io88ndb1 h1 gfb0/io208npb3 h2 gfa0/io207ndb3 fg256 pin number agl1000 function
igloo low power flash fpgas revision 23 4-63 h3 gfb1/io208ppb3 h4 vcomplf h5 gfc0/io209npb3 h6 vcc h7 gnd h8 gnd h9 gnd h10 gnd h11 vcc h12 gcc0/io91npb1 h13 gcb1/io92ppb1 h14 gca0/io93npb1 h15 io96npb1 h16 gcb0/io92npb1 j1 gfa2/io206psb3 j2 gfa1/io207pdb3 j3 vccplf j4 io205ndb3 j5 gfb2/io205pdb3 j6 vcc j7 gnd j8 gnd j9 gnd j10 gnd j11 vcc j12 gcb2/io95ppb1 j13 gca1/io93ppb1 j14 gcc2/io96ppb1 j15 io100ppb1 j16 gca2/io94psb1 k1 gfc2/io204pdb3 k2 io204ndb3 k3 io203ndb3 k4 io203pdb3 k5 vccib3 k6 vcc k7 gnd k8 gnd fg256 pin number agl1000 function k9 gnd k10 gnd k11 vcc k12 vccib1 k13 io95npb1 k14 io100npb1 k15 io102ndb1 k16 io102pdb1 l1 io202ndb3 l2 io202pdb3 l3 io196ppb3 l4 io193ppb3 l5 vccib3 l6 gnd l7 vcc l8 vcc l9 vcc l10 vcc l11 gnd l12 vccib1 l13 gdb0/io112npb1 l14 io106ndb1 l15 io106pdb1 l16 io107pdb1 m1 io197nsb3 m2 io196npb3 m3 io193npb3 m4 gec0/io190npb3 m5 vmv3 m6 vccib2 m7 vccib2 m8 io147rsb2 m9 io136rsb2 m10 vccib2 m11 vccib2 m12 vmv2 m13 io110ndb1 m14 gdb1/io112ppb1 fg256 pin number agl1000 function m15 gdc1/io111pdb1 m16 io107ndb1 n1 io194psb3 n2 io192ppb3 n3 gec1/io190ppb3 n4 io192npb3 n5 gndq n6 gea2/io187rsb2 n7 io161rsb2 n8 io155rsb2 n9 io141rsb2 n10 io129rsb2 n11 io124rsb2 n12 gndq n13 io110pdb1 n14 vjtag n15 gdc0/io111ndb1 n16 gda1/io113pdb1 p1 geb1/io189pdb3 p2 geb0/io189ndb3 p3 vmv2 p4 io179rsb2 p5 io171rsb2 p6 io165rsb2 p7 io159rsb2 p8 io151rsb2 p9 io137rsb2 p10 io134rsb2 p11 io128rsb2 p12 vmv1 p13 tck p14 vpump p15 trst p16 gda0/io113ndb1 r1 gea1/io188pdb3 r2 gea0/io188ndb3 r3 io184rsb2 r4 gec2/io185rsb2 fg256 pin number agl1000 function
package pin assignments 4-64 revision 23 r5 io168rsb2 r6 io163rsb2 r7 io157rsb2 r8 io149rsb2 r9 io143rsb2 r10 io138rsb2 r11 io131rsb2 r12 io125rsb2 r13 gdb2/io115rsb2 r14 tdi r15 gndq r16 tdo t1 gnd t2 io183rsb2 t3 ff/geb2/io186rsb2 t4 io172rsb2 t5 io170rsb2 t6 io164rsb2 t7 io158rsb2 t8 io153rsb2 t9 io142rsb2 t10 io135rsb2 t11 io130rsb2 t12 gdc2/io116rsb2 t13 io120rsb2 t14 gda2/io114rsb2 t15 tms t16 gnd fg256 pin number agl1000 function
igloo low power flash fpgas revision 23 4-65 fg484 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/produ cts/solutions/package/docs.aspx. note: this is the bottom view of the package. a b c d e f g h j k l m n p r t u v w y aa ab 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 a1 ball pad corner
package pin assignments 4-66 revision 23 fg484 pin number agl400 function a1 gnd a2 gnd a3 vccib0 a4 nc a5 nc a6 io15rsb0 a7 io18rsb0 a8 nc a9 nc a10 io23rsb0 a11 io29rsb0 a12 io35rsb0 a13 io36rsb0 a14 nc a15 nc a16 io50rsb0 a17 io51rsb0 a18 nc a19 nc a20 vccib0 a21 gnd a22 gnd aa1 gnd aa2 vccib3 aa3 nc aa4 nc aa5 nc aa6 nc aa7 nc aa8 nc aa9 nc aa10 nc aa11 nc aa12 nc aa13 nc aa14 nc aa15 nc aa16 nc aa17 nc aa18 nc aa19 nc aa20 nc aa21 vccib1 aa22 gnd ab1 gnd ab2 gnd ab3 vccib2 ab4 nc ab5 nc ab6 io121rsb2 ab7 io119rsb2 ab8 io114rsb2 ab9 io109rsb2 ab10 nc ab11 nc ab12 io104rsb2 ab13 io103rsb2 ab14 nc ab15 nc ab16 io91rsb2 ab17 io90rsb2 ab18 nc ab19 nc ab20 vccib2 ab21 gnd ab22 gnd b1 gnd b2 vccib3 b3 nc b4 nc b5 nc b6 nc fg484 pin number agl400 function b7 nc b8 nc b9 nc b10 nc b11 nc b12 nc b13 nc b14 nc b15 nc b16 nc b17 nc b18 nc b19 nc b20 nc b21 vccib1 b22 gnd c1 vccib3 c2 nc c3 nc c4 nc c5 gnd c6 nc c7 nc c8 vcc c9 vcc c10 nc c11 nc c12 nc c13 nc c14 vcc c15 vcc c16 nc c17 nc c18 gnd c19 nc c20 nc fg484 pin number agl400 function
igloo low power flash fpgas revision 23 4-67 c21 nc c22 vccib1 d1 nc d2 nc d3 nc d4 gnd d5 gaa0/io00rsb0 d6 gaa1/io01rsb0 d7 gab0/io02rsb0 d8 io16rsb0 d9 io17rsb0 d10 io22rsb0 d11 io28rsb0 d12 io34rsb0 d13 io37rsb0 d14 io41rsb0 d15 io43rsb0 d16 gbb1/io57rsb0 d17 gba0/io58rsb0 d18 gba1/io59rsb0 d19 gnd d20 nc d21 nc d22 nc e1 nc e2 nc e3 gnd e4 gab2/io154udb3 e5 gaa2/io155udb3 e6 io12rsb0 e7 gab1/io03rsb0 e8 io13rsb0 e9 io14rsb0 e10 io21rsb0 e11 io27rsb0 e12 io32rsb0 fg484 pin number agl400 function e13 io38rsb0 e14 io42rsb0 e15 gbc1/io55rsb0 e16 gbb0/io56rsb0 e17 io44rsb0 e18 gba2/io60pdb1 e19 io60ndb1 e20 gnd e21 nc e22 nc f1 nc f2 nc f3 nc f4 io154vdb3 f5 io155vdb3 f6 io11rsb0 f7 io07rsb0 f8 gac0/io04rsb0 f9 gac1/io05rsb0 f10 io20rsb0 f11 io24rsb0 f12 io33rsb0 f13 io39rsb0 f14 io45rsb0 f15 gbc0/io54rsb0 f16 io48rsb0 f17 vmv0 f18 io61npb1 f19 io63pdb1 f20 nc f21 nc f22 nc g1 nc g2 nc g3 nc g4 io151vdb3 fg484 pin number agl400 function g5 io151udb3 g6 gac2/io153udb3 g7 io06rsb0 g8 gndq g9 io10rsb0 g10 io19rsb0 g11 io26rsb0 g12 io30rsb0 g13 io40rsb0 g14 io46rsb0 g15 gndq g16 io47rsb0 g17 gbb2/io61ppb1 g18 io53rsb0 g19 io63ndb1 g20 nc g21 nc g22 nc h1 nc h2 nc h3 vcc h4 io150pdb3 h5 io08rsb0 h6 io153vdb3 h7 io152vdb3 h8 vmv0 h9 vccib0 h10 vccib0 h11 io25rsb0 h12 io31rsb0 h13 vccib0 h14 vccib0 h15 vmv1 h16 gbc2/io62pdb1 h17 io65rsb1 h18 io52rsb0 fg484 pin number agl400 function
package pin assignments 4-68 revision 23 h19 io66pdb1 h20 vcc h21 nc h22 nc j1 nc j2 nc j3 nc j4 io150ndb3 j5 io149npb3 j6 io09rsb0 j7 io152udb3 j8 vccib3 j9 gnd j10 vcc j11 vcc j12 vcc j13 vcc j14 gnd j15 vccib1 j16 io62ndb1 j17 io49rsb0 j18 io64ppb1 j19 io66ndb1 j20 nc j21 nc j22 nc k1 nc k2 nc k3 nc k4 io148ndb3 k5 io148pdb3 k6 io149ppb3 k7 gfc1/io147ppb3 k8 vccib3 k9 vcc k10 gnd fg484 pin number agl400 function k11 gnd k12 gnd k13 gnd k14 vcc k15 vccib1 k16 gcc1/io67ppb1 k17 io64npb1 k18 io73pdb1 k19 io73ndb1 k20 nc k21 nc k22 nc l1 nc l2 nc l3 nc l4 gfb0/io146npb3 l5 gfa0/io145ndb3 l6 gfb1/io146ppb3 l7 vcomplf l8 gfc0/io147npb3 l9 vcc l10 gnd l11 gnd l12 gnd l13 gnd l14 vcc l15 gcc0/io67npb1 l16 gcb1/io68ppb1 l17 gca0/io69npb1 l18 nc l19 gcb0/io68npb1 l20 nc l21 nc l22 nc m1 nc m2 nc fg484 pin number agl400 function m3 nc m4 gfa2/io144ppb3 m5 gfa1/io145pdb3 m6 vccplf m7 io143ndb3 m8 gfb2/io143pdb3 m9 vcc m10 gnd m11 gnd m12 gnd m13 gnd m14 vcc m15 gcb2/io71ppb1 m16 gca1/io69ppb1 m17 gcc2/io72ppb1 m18 nc m19 gca2/io70pdb1 m20 nc m21 nc m22 nc n1 nc n2 nc n3 nc n4 gfc2/io142pdb3 n5 io144npb3 n6 io141ppb3 n7 io120rsb2 n8 vccib3 n9 vcc n10 gnd n11 gnd n12 gnd n13 gnd n14 vcc n15 vccib1 n16 io71npb1 fg484 pin number agl400 function
igloo low power flash fpgas revision 23 4-69 n17 io74rsb1 n18 io72npb1 n19 io70ndb1 n20 nc n21 nc n22 nc p1 nc p2 nc p3 nc p4 io142ndb3 p5 io141npb3 p6 io125rsb2 p7 io139rsb3 p8 vccib3 p9 gnd p10 vcc p11 vcc p12 vcc p13 vcc p14 gnd p15 vccib1 p16 gdb0/io78vpb1 p17 io76vdb1 p18 io76udb1 p19 io75pdb1 p20 nc p21 nc p22 nc r1 nc r2 nc r3 vcc r4 io140pdb3 r5 io130rsb2 r6 io138npb3 r7 gec0/io137npb3 r8 vmv3 fg484 pin number agl400 function r9 vccib2 r10 vccib2 r11 io108rsb2 r12 io101rsb2 r13 vccib2 r14 vccib2 r15 vmv2 r16 io83rsb2 r17 gdb1/io78upb1 r18 gdc1/io77udb1 r19 io75ndb1 r20 vcc r21 nc r22 nc t1 nc t2 nc t3 nc t4 io140ndb3 t5 io138ppb3 t6 gec1/io137ppb3 t7 io131rsb2 t8 gndq t9 gea2/io134rsb2 t10 io117rsb2 t11 io111rsb2 t12 io99rsb2 t13 io94rsb2 t14 io87rsb2 t15 gndq t16 io93rsb2 t17 vjtag t18 gdc0/io77vdb1 t19 gda1/io79udb1 t20 nc t21 nc t22 nc fg484 pin number agl400 function u1 nc u2 nc u3 nc u4 geb1/io136pdb3 u5 geb0/io136ndb3 u6 vmv2 u7 io129rsb2 u8 io128rsb2 u9 io122rsb2 u10 io115rsb2 u11 io110rsb2 u12 io98rsb2 u13 io95rsb2 u14 io88rsb2 u15 io84rsb2 u16 tck u17 vpump u18 trst u19 gda0/io79vdb1 u20 nc u21 nc u22 nc v1 nc v2 nc v3 gnd v4 gea1/io135pdb3 v5 gea0/io135ndb3 v6 io127rsb2 v7 gec2/io132rsb2 v8 io123rsb2 v9 io118rsb2 v10 io112rsb2 v11 io106rsb2 v12 io100rsb2 v13 io96rsb2 v14 io89rsb2 fg484 pin number agl400 function
package pin assignments 4-70 revision 23 v15 io85rsb2 v16 gdb2/io81rsb2 v17 tdi v18 nc v19 tdo v20 gnd v21 nc v22 nc w1 nc w2 nc w3 nc w4 gnd w5 io126rsb2 w6 ff/geb2/io133rsb2 w7 io124rsb2 w8 io116rsb2 w9 io113rsb2 w10 io107rsb2 w11 io105rsb2 w12 io102rsb2 w13 io97rsb2 w14 io92rsb2 w15 gdc2/io82rsb2 w16 io86rsb2 w17 gda2/io80rsb2 w18 tms w19 gnd w20 nc w21 nc w22 nc y1 vccib3 y2 nc y3 nc y4 nc y5 gnd y6 nc fg484 pin number agl400 function y7 nc y8 vcc y9 vcc y10 nc y11 nc y12 nc y13 nc y14 vcc y15 vcc y16 nc y17 nc y18 gnd y19 nc y20 nc y21 nc y22 vccib1 fg484 pin number agl400 function
igloo low power flash fpgas revision 23 4-71 fg484 pin number agl600 function a1 gnd a2 gnd a3 vccib0 a4 nc a5 nc a6 io09rsb0 a7 io15rsb0 a8 nc a9 nc a10 io22rsb0 a11 io23rsb0 a12 io29rsb0 a13 io35rsb0 a14 nc a15 nc a16 io46rsb0 a17 io48rsb0 a18 nc a19 nc a20 vccib0 a21 gnd a22 gnd aa1 gnd aa2 vccib3 aa3 nc aa4 nc aa5 nc aa6 io135rsb2 aa7 io133rsb2 aa8 nc aa9 nc aa10 nc aa11 nc aa12 nc aa13 nc aa14 nc aa15 nc aa16 io101rsb2 aa17 nc aa18 nc aa19 nc aa20 nc aa21 vccib1 aa22 gnd ab1 gnd ab2 gnd ab3 vccib2 ab4 nc ab5 nc ab6 io130rsb2 ab7 io128rsb2 ab8 io122rsb2 ab9 io116rsb2 ab10 nc ab11 nc ab12 io113rsb2 ab13 io112rsb2 ab14 nc ab15 nc ab16 io100rsb2 ab17 io95rsb2 ab18 nc ab19 nc ab20 vccib2 ab21 gnd ab22 gnd b1 gnd b2 vccib3 b3 nc b4 nc b5 nc b6 io08rsb0 fg484 pin number agl600 function b7 io12rsb0 b8 nc b9 nc b10 io17rsb0 b11 nc b12 nc b13 io36rsb0 b14 nc b15 nc b16 io47rsb0 b17 io49rsb0 b18 nc b19 nc b20 nc b21 vccib1 b22 gnd c1 vccib3 c2 nc c3 nc c4 nc c5 gnd c6 nc c7 nc c8 vcc c9 vcc c10 nc c11 nc c12 nc c13 nc c14 vcc c15 vcc c16 nc c17 nc c18 gnd c19 nc c20 nc fg484 pin number agl600 function
package pin assignments 4-72 revision 23 c21 nc c22 vccib1 d1 nc d2 nc d3 nc d4 gnd d5 gaa0/io00rsb0 d6 gaa1/io01rsb0 d7 gab0/io02rsb0 d8 io11rsb0 d9 io16rsb0 d10 io18rsb0 d11 io28rsb0 d12 io34rsb0 d13 io37rsb0 d14 io41rsb0 d15 io43rsb0 d16 gbb1/io57rsb0 d17 gba0/io58rsb0 d18 gba1/io59rsb0 d19 gnd d20 nc d21 nc d22 nc e1 nc e2 nc e3 gnd e4 gab2/io173pdb3 e5 gaa2/io174pdb3 e6 gndq e7 gab1/io03rsb0 e8 io13rsb0 e9 io14rsb0 e10 io21rsb0 e11 io27rsb0 e12 io32rsb0 fg484 pin number agl600 function e13 io38rsb0 e14 io42rsb0 e15 gbc1/io55rsb0 e16 gbb0/io56rsb0 e17 io52rsb0 e18 gba2/io60pdb1 e19 io60ndb1 e20 gnd e21 nc e22 nc f1 nc f2 nc f3 nc f4 io173ndb3 f5 io174ndb3 f6 vmv3 f7 io07rsb0 f8 gac0/io04rsb0 f9 gac1/io05rsb0 f10 io20rsb0 f11 io24rsb0 f12 io33rsb0 f13 io39rsb0 f14 io44rsb0 f15 gbc0/io54rsb0 f16 io51rsb0 f17 vmv0 f18 io61npb1 f19 io63pdb1 f20 nc f21 nc f22 nc g1 io170ndb3 g2 io170pdb3 g3 nc g4 io171ndb3 fg484 pin number agl600 function g5 io171pdb3 g6 gac2/io172pdb3 g7 io06rsb0 g8 gndq g9 io10rsb0 g10 io19rsb0 g11 io26rsb0 g12 io30rsb0 g13 io40rsb0 g14 io45rsb0 g15 gndq g16 io50rsb0 g17 gbb2/io61ppb1 g18 io53rsb0 g19 io63ndb1 g20 nc g21 nc g22 nc h1 nc h2 nc h3 vcc h4 io166pdb3 h5 io167npb3 h6 io172ndb3 h7 io169ndb3 h8 vmv0 h9 vccib0 h10 vccib0 h11 io25rsb0 h12 io31rsb0 h13 vccib0 h14 vccib0 h15 vmv1 h16 gbc2/io62pdb1 h17 io67ppb1 h18 io64ppb1 fg484 pin number agl600 function
igloo low power flash fpgas revision 23 4-73 h19 io66pdb1 h20 vcc h21 nc h22 nc j1 nc j2 nc j3 nc j4 io166ndb3 j5 io168npb3 j6 io167ppb3 j7 io169pdb3 j8 vccib3 j9 gnd j10 vcc j11 vcc j12 vcc j13 vcc j14 gnd j15 vccib1 j16 io62ndb1 j17 io64npb1 j18 io65ppb1 j19 io66ndb1 j20 nc j21 io68pdb1 j22 io68ndb1 k1 io157pdb3 k2 io157ndb3 k3 nc k4 io165ndb3 k5 io165pdb3 k6 io168ppb3 k7 gfc1/io164ppb3 k8 vccib3 k9 vcc k10 gnd fg484 pin number agl600 function k11 gnd k12 gnd k13 gnd k14 vcc k15 vccib1 k16 gcc1/io69ppb1 k17 io65npb1 k18 io75pdb1 k19 io75ndb1 k20 nc k21 io76ndb1 k22 io76pdb1 l1 nc l2 io155pdb3 l3 nc l4 gfb0/io163npb3 l5 gfa0/io162ndb3 l6 gfb1/io163ppb3 l7 vcomplf l8 gfc0/io164npb3 l9 vcc l10 gnd l11 gnd l12 gnd l13 gnd l14 vcc l15 gcc0/io69npb1 l16 gcb1/io70ppb1 l17 gca0/io71npb1 l18 io67npb1 l19 gcb0/io70npb1 l20 io77pdb1 l21 io77ndb1 l22 io78npb1 m1 nc m2 io155ndb3 fg484 pin number agl600 function m3 io158npb3 m4 gfa2/io161ppb3 m5 gfa1/io162pdb3 m6 vccplf m7 io160ndb3 m8 gfb2/io160pdb3 m9 vcc m10 gnd m11 gnd m12 gnd m13 gnd m14 vcc m15 gcb2/io73ppb1 m16 gca1/io71ppb1 m17 gcc2/io74ppb1 m18 io80ppb1 m19 gca2/io72pdb1 m20 io79ppb1 m21 io78ppb1 m22 nc n1 io154ndb3 n2 io154pdb3 n3 nc n4 gfc2/io159pdb3 n5 io161npb3 n6 io156ppb3 n7 io129rsb2 n8 vccib3 n9 vcc n10 gnd n11 gnd n12 gnd n13 gnd n14 vcc n15 vccib1 n16 io73npb1 fg484 pin number agl600 function
package pin assignments 4-74 revision 23 n17 io80npb1 n18 io74npb1 n19 io72ndb1 n20 nc n21 io79npb1 n22 nc p1 nc p2 io153pdb3 p3 io153ndb3 p4 io159ndb3 p5 io156npb3 p6 io151ppb3 p7 io158ppb3 p8 vccib3 p9 gnd p10 vcc p11 vcc p12 vcc p13 vcc p14 gnd p15 vccib1 p16 gdb0/io87npb1 p17 io85ndb1 p18 io85pdb1 p19 io84pdb1 p20 nc p21 io81pdb1 p22 nc r1 nc r2 nc r3 vcc r4 io150pdb3 r5 io151npb3 r6 io147npb3 r7 gec0/io146npb3 r8 vmv3 fg484 pin number agl600 function r9 vccib2 r10 vccib2 r11 io117rsb2 r12 io110rsb2 r13 vccib2 r14 vccib2 r15 vmv2 r16 io94rsb2 r17 gdb1/io87ppb1 r18 gdc1/io86pdb1 r19 io84ndb1 r20 vcc r21 io81ndb1 r22 io82pdb1 t1 io152pdb3 t2 io152ndb3 t3 nc t4 io150ndb3 t5 io147ppb3 t6 gec1/io146ppb3 t7 io140rsb2 t8 gndq t9 gea2/io143rsb2 t10 io126rsb2 t11 io120rsb2 t12 io108rsb2 t13 io103rsb2 t14 io99rsb2 t15 gndq t16 io92rsb2 t17 vjtag t18 gdc0/io86ndb1 t19 gda1/io88pdb1 t20 nc t21 io83pdb1 t22 io82ndb1 fg484 pin number agl600 function u1 io149pdb3 u2 io149ndb3 u3 nc u4 geb1/io145pdb3 u5 geb0/io145ndb3 u6 vmv2 u7 io138rsb2 u8 io136rsb2 u9 io131rsb2 u10 io124rsb2 u11 io119rsb2 u12 io107rsb2 u13 io104rsb2 u14 io97rsb2 u15 vmv1 u16 tck u17 vpump u18 trst u19 gda0/io88ndb1 u20 nc u21 io83ndb1 u22 nc v1 nc v2 nc v3 gnd v4 gea1/io144pdb3 v5 gea0/io144ndb3 v6 io139rsb2 v7 gec2/io141rsb2 v8 io132rsb2 v9 io127rsb2 v10 io121rsb2 v11 io114rsb2 v12 io109rsb2 v13 io105rsb2 v14 io98rsb2 fg484 pin number agl600 function
igloo low power flash fpgas revision 23 4-75 v15 io96rsb2 v16 gdb2/io90rsb2 v17 tdi v18 gndq v19 tdo v20 gnd v21 nc v22 nc w1 nc w2 io148pdb3 w3 nc w4 gnd w5 io137rsb2 w6 ff/geb2/io142rsb2 w7 io134rsb2 w8 io125rsb2 w9 io123rsb2 w10 io118rsb2 w11 io115rsb2 w12 io111rsb2 w13 io106rsb2 w14 io102rsb2 w15 gdc2/io91rsb2 w16 io93rsb2 w17 gda2/io89rsb2 w18 tms w19 gnd w20 nc w21 nc w22 nc y1 vccib3 y2 io148ndb3 y3 nc y4 nc y5 gnd y6 nc fg484 pin number agl600 function y7 nc y8 vcc y9 vcc y10 nc y11 nc y12 nc y13 nc y14 vcc y15 vcc y16 nc y17 nc y18 gnd y19 nc y20 nc y21 nc y22 vccib1 fg484 pin number agl600 function
package pin assignments 4-76 revision 23 fg484 pin number agl1000 function a1 gnd a2 gnd a3 vccib0 a4 io07rsb0 a5 io09rsb0 a6 io13rsb0 a7 io18rsb0 a8 io20rsb0 a9 io26rsb0 a10 io32rsb0 a11 io40rsb0 a12 io41rsb0 a13 io53rsb0 a14 io59rsb0 a15 io64rsb0 a16 io65rsb0 a17 io67rsb0 a18 io69rsb0 a19 nc a20 vccib0 a21 gnd a22 gnd aa1 gnd aa2 vccib3 aa3 nc aa4 io181rsb2 aa5 io178rsb2 aa6 io175rsb2 aa7 io169rsb2 aa8 io166rsb2 aa9 io160rsb2 aa10 io152rsb2 aa11 io146rsb2 aa12 io139rsb2 aa13 io133rsb2 aa14 nc aa15 nc aa16 io122rsb2 aa17 io119rsb2 aa18 io117rsb2 aa19 nc aa20 nc aa21 vccib1 aa22 gnd ab1 gnd ab2 gnd ab3 vccib2 ab4 io180rsb2 ab5 io176rsb2 ab6 io173rsb2 ab7 io167rsb2 ab8 io162rsb2 ab9 io156rsb2 ab10 io150rsb2 ab11 io145rsb2 ab12 io144rsb2 ab13 io132rsb2 ab14 io127rsb2 ab15 io126rsb2 ab16 io123rsb2 ab17 io121rsb2 ab18 io118rsb2 ab19 nc ab20 vccib2 ab21 gnd ab22 gnd b1 gnd b2 vccib3 b3 nc b4 io06rsb0 b5 io08rsb0 b6 io12rsb0 fg484 pin number agl1000 function b7 io15rsb0 b8 io19rsb0 b9 io24rsb0 b10 io31rsb0 b11 io39rsb0 b12 io48rsb0 b13 io54rsb0 b14 io58rsb0 b15 io63rsb0 b16 io66rsb0 b17 io68rsb0 b18 io70rsb0 b19 nc b20 nc b21 vccib1 b22 gnd c1 vccib3 c2 io220pdb3 c3 nc c4 nc c5 gnd c6 io10rsb0 c7 io14rsb0 c8 vcc c9 vcc c10 io30rsb0 c11 io37rsb0 c12 io43rsb0 c13 nc c14 vcc c15 vcc c16 nc c17 nc c18 gnd c19 nc c20 nc fg484 pin number agl1000 function
igloo low power flash fpgas revision 23 4-77 c21 nc c22 vccib1 d1 io219pdb3 d2 io220ndb3 d3 nc d4 gnd d5 gaa0/io00rsb0 d6 gaa1/io01rsb0 d7 gab0/io02rsb0 d8 io16rsb0 d9 io22rsb0 d10 io28rsb0 d11 io35rsb0 d12 io45rsb0 d13 io50rsb0 d14 io55rsb0 d15 io61rsb0 d16 gbb1/io75rsb0 d17 gba0/io76rsb0 d18 gba1/io77rsb0 d19 gnd d20 nc d21 nc d22 nc e1 io219ndb3 e2 nc e3 gnd e4 gab2/io224pdb3 e5 gaa2/io225pdb3 e6 gndq e7 gab1/io03rsb0 e8 io17rsb0 e9 io21rsb0 e10 io27rsb0 e11 io34rsb0 e12 io44rsb0 fg484 pin number agl1000 function e13 io51rsb0 e14 io57rsb0 e15 gbc1/io73rsb0 e16 gbb0/io74rsb0 e17 io71rsb0 e18 gba2/io78pdb1 e19 io81pdb1 e20 gnd e21 nc e22 io84pdb1 f1 nc f2 io215pdb3 f3 io215ndb3 f4 io224ndb3 f5 io225ndb3 f6 vmv3 f7 io11rsb0 f8 gac0/io04rsb0 f9 gac1/io05rsb0 f10 io25rsb0 f11 io36rsb0 f12 io42rsb0 f13 io49rsb0 f14 io56rsb0 f15 gbc0/io72rsb0 f16 io62rsb0 f17 vmv0 f18 io78ndb1 f19 io81ndb1 f20 io82ppb1 f21 nc f22 io84ndb1 g1 io214ndb3 g2 io214pdb3 g3 nc g4 io222ndb3 fg484 pin number agl1000 function g5 io222pdb3 g6 gac2/io223pdb3 g7 io223ndb3 g8 gndq g9 io23rsb0 g10 io29rsb0 g11 io33rsb0 g12 io46rsb0 g13 io52rsb0 g14 io60rsb0 g15 gndq g16 io80ndb1 g17 gbb2/io79pdb1 g18 io79ndb1 g19 io82npb1 g20 io85pdb1 g21 io85ndb1 g22 nc h1 nc h2 nc h3 vcc h4 io217pdb3 h5 io218pdb3 h6 io221ndb3 h7 io221pdb3 h8 vmv0 h9 vccib0 h10 vccib0 h11 io38rsb0 h12 io47rsb0 h13 vccib0 h14 vccib0 h15 vmv1 h16 gbc2/io80pdb1 h17 io83ppb1 h18 io86ppb1 fg484 pin number agl1000 function
igloo low power flash fpgas revision 23 4-78 h19 io87pdb1 h20 vcc h21 nc h22 nc j1 io212ndb3 j2 io212pdb3 j3 nc j4 io217ndb3 j5 io218ndb3 j6 io216pdb3 j7 io216ndb3 j8 vccib3 j9 gnd j10 vcc j11 vcc j12 vcc j13 vcc j14 gnd j15 vccib1 j16 io83npb1 j17 io86npb1 j18 io90ppb1 j19 io87ndb1 j20 nc j21 io89pdb1 j22 io89ndb1 k1 io211pdb3 k2 io211ndb3 k3 nc k4 io210ppb3 k5 io213ndb3 k6 io213pdb3 k7 gfc1/io209ppb3 k8 vccib3 k9 vcc k10 gnd fg484 pin number agl1000 function k11 gnd k12 gnd k13 gnd k14 vcc k15 vccib1 k16 gcc1/io91ppb1 k17 io90npb1 k18 io88pdb1 k19 io88ndb1 k20 io94npb1 k21 io98ndb1 k22 io98pdb1 l1 nc l2 io200pdb3 l3 io210npb3 l4 gfb0/io208npb3 l5 gfa0/io207ndb3 l6 gfb1/io208ppb3 l7 vcomplf l8 gfc0/io209npb3 l9 vcc l10 gnd l11 gnd l12 gnd l13 gnd l14 vcc l15 gcc0/io91npb1 l16 gcb1/io92ppb1 l17 gca0/io93npb1 l18 io96npb1 l19 gcb0/io92npb1 l20 io97pdb1 l21 io97ndb1 l22 io99npb1 m1 nc m2 io200ndb3 fg484 pin number agl1000 function m3 io206ndb3 m4 gfa2/io206pdb3 m5 gfa1/io207pdb3 m6 vccplf m7 io205ndb3 m8 gfb2/io205pdb3 m9 vcc m10 gnd m11 gnd m12 gnd m13 gnd m14 vcc m15 gcb2/io95ppb1 m16 gca1/io93ppb1 m17 gcc2/io96ppb1 m18 io100ppb1 m19 gca2/io94ppb1 m20 io101ppb1 m21 io99ppb1 m22 nc n1 io201ndb3 n2 io201pdb3 n3 nc n4 gfc2/io204pdb3 n5 io204ndb3 n6 io203ndb3 n7 io203pdb3 n8 vccib3 n9 vcc n10 gnd n11 gnd n12 gnd n13 gnd n14 vcc n15 vccib1 n16 io95npb1 fg484 pin number agl1000 function
igloo low power flash fpgas revision 23 4-79 n17 io100npb1 n18 io102ndb1 n19 io102pdb1 n20 nc n21 io101npb1 n22 io103pdb1 p1 nc p2 io199pdb3 p3 io199ndb3 p4 io202ndb3 p5 io202pdb3 p6 io196ppb3 p7 io193ppb3 p8 vccib3 p9 gnd p10 vcc p11 vcc p12 vcc p13 vcc p14 gnd p15 vccib1 p16 gdb0/io112npb1 p17 io106ndb1 p18 io106pdb1 p19 io107pdb1 p20 nc p21 io104pdb1 p22 io103ndb1 r1 nc r2 io197ppb3 r3 vcc r4 io197npb3 r5 io196npb3 r6 io193npb3 r7 gec0/io190npb3 r8 vmv3 fg484 pin number agl1000 function r9 vccib2 r10 vccib2 r11 io147rsb2 r12 io136rsb2 r13 vccib2 r14 vccib2 r15 vmv2 r16 io110ndb1 r17 gdb1/io112ppb1 r18 gdc1/io111pdb1 r19 io107ndb1 r20 vcc r21 io104ndb1 r22 io105pdb1 t1 io198pdb3 t2 io198ndb3 t3 nc t4 io194ppb3 t5 io192ppb3 t6 gec1/io190ppb3 t7 io192npb3 t8 gndq t9 gea2/io187rsb2 t10 io161rsb2 t11 io155rsb2 t12 io141rsb2 t13 io129rsb2 t14 io124rsb2 t15 gndq t16 io110pdb1 t17 vjtag t18 gdc0/io111ndb1 t19 gda1/io113pdb1 t20 nc t21 io108pdb1 t22 io105ndb1 fg484 pin number agl1000 function u1 io195pdb3 u2 io195ndb3 u3 io194npb3 u4 geb1/io189pdb3 u5 geb0/io189ndb3 u6 vmv2 u7 io179rsb2 u8 io171rsb2 u9 io165rsb2 u10 io159rsb2 u11 io151rsb2 u12 io137rsb2 u13 io134rsb2 u14 io128rsb2 u15 vmv1 u16 tck u17 vpump u18 trst u19 gda0/io113ndb1 u20 nc u21 io108ndb1 u22 io109pdb1 v1 nc v2 nc v3 gnd v4 gea1/io188pdb3 v5 gea0/io188ndb3 v6 io184rsb2 v7 gec2/io185rsb2 v8 io168rsb2 v9 io163rsb2 v10 io157rsb2 v11 io149rsb2 v12 io143rsb2 v13 io138rsb2 v14 io131rsb2 fg484 pin number agl1000 function
package pin assignments 4-80 revision 23 v15 io125rsb2 v16 gdb2/io115rsb2 v17 tdi v18 gndq v19 tdo v20 gnd v21 nc v22 io109ndb1 w1 nc w2 io191pdb3 w3 nc w4 gnd w5 io183rsb2 w6 ff/geb2/io186rsb2 w7 io172rsb2 w8 io170rsb2 w9 io164rsb2 w10 io158rsb2 w11 io153rsb2 w12 io142rsb2 w13 io135rsb2 w14 io130rsb2 w15 gdc2/io116rsb2 w16 io120rsb2 w17 gda2/io114rsb2 w18 tms w19 gnd w20 nc w21 nc w22 nc y1 vccib3 y2 io191ndb3 y3 nc y4 io182rsb2 y5 gnd y6 io177rsb2 fg484 pin number agl1000 function y7 io174rsb2 y8 vcc y9 vcc y10 io154rsb2 y11 io148rsb2 y12 io140rsb2 y13 nc y14 vcc y15 vcc y16 nc y17 nc y18 gnd y19 nc y20 nc y21 nc y22 vccib1 fg484 pin number agl1000 function
igloo low power flash fpgas revision 23 4-81
package pin assignments 4-82 revision 23
revision 23 5-1 5 ? datasheet information list of changes the following tables list critical changes that we re made in each revision of the igloo datasheet. revision changes page revision 23 (december 2012) the "igloo ordering in formation" section has been updated to mention "y" as "blank" mentioning "device does not include li cense to implement ip based on the cryptography research, inc. (cri ) patent portfolio" (sar 43173). iii the note in table 2-189 igloo ccc/pll specification and table 2-190 igloo ccc/pll specification referring the reader to smartgen was revised to refer instead to the online help associated with the core (sar 42564). additionally, note regarding ssos was added. 2-113 , 2-114 live at power-up (lapu) has been replaced with ?instant on?. na revision 22 (september 2012) the "security" section was modified to clarify t hat microsemi does not support read- back of programmed data. 1-2 libero integrated design environment (ide) was changed to libero system-on-chip (soc) throughout the document (sar 40271). n/a revision 21 (may 2012) under agl125, in the package pin list, cs121 was incorrectly added to the datasheet in revision 19 and has been removed (sar 38217). i to iv corrected the inadvertent error for max values for lvpecl vih and revised the same to ?3.6? in table 2-151 minimum and maximum dc input and output levels (sar 37685). 2-82 figure 2-38 ? fifo read and figure 2-39 ? fifo write have been added (sar 34841). 2-125 the following sentence was removed from the vmvx description in the "pin descriptions" section : "within the package, the vmv plane is decoupled from the simultaneous switching noise originating from the output buffer vcci domain" and replaced with ?within the package, the vmv plane biases the input stage of the i/os in the i/o banks? (sar 38317). the datash eet mentions that "vmv pins must be connected to the corresponding vcci pins" for an esd enhancement. 3-1 pin description table for agl125 cs121 was removed as it was incorrectly added to the datasheet in revision 19 (sar 38217). - revision 20 (march 2012) notes indicating that agl015 is not recommended for new designs have been added. the "devices not recommended for new designs" section is new (sar 35015). i to iv notes indicating that device/package support is tbd for agl250-qn132 and agl060-fg144 have been reinserted (sar 33689). i to iv values for the power data for pac1, pac2, pac3, pac4, pac7, and pac8 were revised in table 2-19 ? different components contributing to dynamic power consumption in igloo devices and table 2-21 ? different components contributing to dynamic power consumption in igloo devices to match the smartpower tool in libero software version 9.0 sp1 and power calculator spreadsheet v7a released on 08/10/2010 (sar 33768). 2-13 , 2-15 the reference to guidelines for global spines and versatile rows, given in the "global clock contribution?pclock" section , was corrected to the "spine architecture" section of the global resources chapter in the igloo fpga fabric user?s guide (sar 34730). 2-17
datasheet information 5-2 revision 23 revision 20 (continued) figure 2-4 ? input buffer timing model and delays (example) has been modified for the din waveform; the rise and fall time label has been changed to t din (sar 37104). 2-21 added missing characteristics for 3.3 v lv cmos, 3.3 v lvcmos wide range, 1.2 v lvcmos, and 1.2 v lvcmos wide range to the following tables: ? table 2-38 , ta b l e 2 - 3 9 , table 2-40 , ta b l e 2 - 4 2 , table 2-43 , and ta b l e 2 - 4 4 (sars 33854 and 36891) ? table 2-63 , ta b l e 2 - 6 4 , and table 2-65 (sar 33854) ? table 2-127 , table 2-128 , table 2-129 , table 2-137 , table 2-138 , and table 2-139 (sar 36891). 2-35 to 2-40 , 2-47 to 2-49 , 2-74 , 2-76 , and 2-77 ac loading figures in the "single-ended i/o characteristics" section were updated to match table 2-50 ac waveforms, measuring points, and capacitive loads (sar 34878). 2-42 added values for minimum pulse width and removed the frmax row from table 2-173 through table 2-188 in the "global tree timing ch aracteristics" section . use the software to determine the frmax for the device you are using (sar 29271). 2-105 through 2-112 revision 19 (september 2011) cs121 was added to the product tables in the "igloo low power flash fpgas" section for agl125 (sar 22737). cs81 was added for agl250 (sar 22737). i notes indicating that device/package support is tbd for agl250-qn132 and agl060-fg144 have been removed (sar 33689). i to iv m1agl400 was removed from the "i/os per package1" table. this device was discontinued in april 2009 (sar 32450). ii dimensions for the qn48 package were added to table 1 ? igloo fpgas package sizes dimensions (sar 30537). ii the y security option and licensed dpa logo were added to the "igloo ordering information" section . the trademarked licensed dpa logo identifies that a product is covered by a dpa counter-measures license from cryptography research (sar 32151). iii the "in-system programming (i sp) and security" section and "security" section were revised to clarify that although no existing security measures can give an absolute guarantee, microsemi fpgas implement the be st security available in the industry (sar 32865). i , 1-2 the following sentence was removed from the "advanced architecture" section : "in addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 v) programming of igloo devices via an ieee 1532 jtag interface" (sar 28756). 1-3 the "specifying i/o states du ring programming" section is new (sar 21281). 1-8 values for vccpll at 1.2 v ?1.5 v dc core supply voltage were revised in table 2-2 ? recommended operating conditions 1 (sar 22356). the value for vpump operation was changed from "0 to 3.45 v" to "0 to 3.6 v" (sar 25220). the value for vccpll 1.5 v dc core supply voltage was changed from" 1.4 to 1.6 v" to "1.425 to 1.575 v" (sar 26551). the notes in the table were renumbered in order of their appearance in the table (sar 21869). 2-2 the temperature used in eq 2 was revised from 110c to 100c for consistency with the limits given in table 2-2 ? recommended operating conditions 1 . the resulting maximum power allowed is thus 1.28 w. formerly it was 1.71 w (sar 26259). 2-6 revision changes page
igloo low power flash fpgas revision 23 5-3 revision 19 (continued) values for cs196, cs281, and qn132 packages were added to table 2-5 ? package thermal resistivities (sars 26228, 32301). 2-6 table 2-6 ? temperature and voltage derating factors for timing delays (normalized to tj = 70c, vcc = 1.425 v) and table 2-7 ? temperature and voltage derating factors for timing delays (normalized to tj = 70c, vcc = 1.14 v) were updated to remove the column for ?20c and shift the data over to correct columns (sar 23041). 2-7 the tables in the "quiescent supply current" section were updated with revised notes on idd (sar 24112). table 2-8 ? power supply state per mode is new. 2-7 the formulas in the table notes for table 2-41 ? i/o weak pull-up/pull-down resistances were corrected (sar 21348). 2-37 the row for 110c was removed from table 2-45 ? duration of short circuit event before failure . the example in the associated paragraph was changed from 110c to 100c. table 2-46 ? i/o input rise time, fall time, and related i/o reliability1 was revised to change 110 to 100c. (sar 26259). 2-40 the notes regarding drive strength in the "summary of i/o timing characteristics ? default i/o software settings" section , "3.3 v lvcmos wide range" section and "1.2 v lvcmos wide range" section tables were revised for clarification. they now state that the minimum drive strength for the defa ult software configuration when run in wide range is 100 a. the drive strength displayed in software is supported in normal range only. for a detailed i/v curve, refer to the ibis models (sar 25700). 2-28 , 2-47 , 2-76 the following sentence was deleted from the "2.5 v lvcmos" section (sar 24916): "it uses a 5 v?tolerant input buffe r and push-pull output buffer." 2-56 the values for f ddrimax and f ddomax were updated in the tables in the "input ddr module" section and "output ddr module" section (sar 23919). 2-92 , 2-95 the following notes were removed from table 2-147 ? minimum and maximum dc input and output levels (sar 29428): 5% differential input voltage = 350 mv 2-80 table 2-189 ? igloo ccc/pll specification and table 2-190 ? igloo ccc/pll specification were updated. a note was added to both tables indicating that when the ccc/pll core is generated by mircosemi core generator software, not all delay values of the specified delay increments are available (sar 25705). 2-113 the following figures were deleted (sar 29991). reference was made to a new application note, simultaneous read-write operations in dual-port sram for flash- based csocs and fpga s , which covers these cases in detail (sar 21770). figure 2-36 ? write access after write onto same address figure 2-37 ? read access after write onto same address figure 2-38 ? write access after read onto same address the port names in the sram "timing waveforms" , sram "timing characteristics" tables, figure 2-40 ? fifo reset , and the fifo "timing characteristics" tables were revised to ensure consistency with the software names (sars 29991, 30510). n/a 2-117 to 2-128 the "pin descriptions" chapter has been added (sar 21642). 3-1 package names used in the "package pin assignments" section were revised to match standards given in package mechanical drawings (sar 27395). 4-1 the "cs81" pin table for agl250 is new (sar 22737). 4-5 the cs121 pin table for agl125 is new (sar 22737). the p3 function was revised in the "cs196" pin table for agl250 (sar 24800). 4-12 revision changes page
datasheet information 5-4 revision 23 revision 19 (continued) the "qn132" pin table for agl250 was added. the "fg144" pin table for agl060 was added (sar 33689) 4-35 , 4-43 july 2010 the versioning system for datasheets has been changed . datasheets are assigned a revision number that increments each time the datasheet is revised. the "igloo device status" table indicates the status for each device in the device family. n/a revision changes page
igloo low power flash fpgas revision 23 5-5 revision / version changes page revision 18 (nov 2009) the version changed to v2.0 for iglo o datasheet chapters, indicating the datasheet contains information based on final characterization. please review the datasheet carefully as most tabl es were updated with new data. n/a revision 17 (sep 2009) product brief v1.6 the "reprogrammable flash technology" section was modified to add "250 mhz (1.5 v systems) and 160 mhz (1.2 v systems) system performance." i "igloo ordering information" was revised to note t hat halogen-free packages are available with rohs-compliant packaging. iii table 1-1 ? i/o standards supported is new. 1-7 the definitions of hot-swap and cold-sparing were added to the "i/os with advanced i/o standards" section . 1-7 revision 16 (apr 2009) product brief v1.5 m1agl400 is no longer offered and was removed from the "igloo devices" product table, "igloo ordering information" , and "temperature grade offerings" . i , iii , iv the ?f speed grade is no longer offered for igloo devices. the speed grade column and note regarding ?f speed grade were removed from "igloo ordering information" . the "speed grade and temper ature grade matrix" section was removed. iii , iv this datasheet now has fully characte rized data and has moved from being advance to a production version. the version number changed from advance v0.5 to v2.0. please review the datasheet carefully as most tables were updated with new data. n/a dc and switching characteristics advance v0.6 3.3 v lvcmos and 1.2 v lvcmos wide range support was added to the datasheet. this affects all tables t hat contained 3.3 v lvcmos and 1.2 v lvcmos data. i il and i ih input leakage current information was added to all "minimum and maximum dc input and output levels" tables. n/a ?f was removed from the datasheet. the speed grade is no longer supported. n/a the notes in table 2-2 ? recommended operating conditions 1 were updated. 2-2 table 2-4 ? overshoot and undershoot limits 1 was updated. 2-3 table 2-5 ? package thermal resistivities was updated. 2-6 table 2-6 ? temperature and voltage derating factors for timing delays (normalized to tj = 70c, vcc = 1.425 v) and table 2-7 ? temperature and voltage derating factors for timing delays (normalized to tj = 70c, vcc = 1.14 v) were updated. 2-7 in table 2-191 ? ram4k9 and table 2-193 ? ram4k9 , the following specifications were removed: t wro t cckh 2-120 and 2-122 in table 2-192 ? ram512x18 and table 2-194 ? ram512x18 , the following specifications were removed: t wro t cckh 2-121 and 2-123 revision 15 (feb 2009) packaging v1.9 the "qn132" pin table for the agl060 device is new. 4-31
datasheet information 5-6 revision 23 revision 14 (feb 2009) product brief v1.4 the "advanced i/o" section was revised to include two bullets regarding wide range power supply voltage support. i 3.0 v wide range was added to the list of supported voltages in the "i/os with advanced i/o standards" section . the "wide range i/o support" section is new. 1-8 revision 13 (jan 2009) packaging v1.8 the "cs121" pin table was revised to add a note regarding pins f1 and g1. 4-7 revision 12 (dec 2008) product brief v1.3 qn48 and qn68 were added to the agl030 for the following tables: "igloo devices" product family table "igloo ordering information" "temperature grade offerings" n/a qn132 is fully supported by agl125 so footnote 3 was removed. packaging v1.7 the "qn48" pin diagram and pin table are new. 4-24 the "qn68" pin table for agl030 is new. 4-26 revision 12 (dec 2008) the agl600 function for pin k15 in the "fg484" table was changed to vccib1. 4-71 revision 11 (oct 2008) product brief v1.2 this document was updated to include agl400 device information. the following sections were updated: "igloo devices" product family table "igloo ordering information" "temperature grade offerings" figure 1-2 ? igloo device architecture overview with four i/o banks (agl250, agl600, agl400, and agl1000) n/a dc and switching characteristics advance v0.5 the tables in the "quiescent supply current" section were updated with values for agl400. in addition, the title was updated to include: (vcc = vjtag = vpp = 0 v). 2-7 the tables in the "power consumption of various internal resources" section were updated with values for agl400. 2-13 table 2-178 ? agl400 global resource is new. 2-107 packaging v1.6 the "cs196" table for the agl400 device is new. 4-14 the "fg144" table for the agl400 device is new. 4-49 the "fg256" table for the agl400 device is new. 4-56 the "fg484" table for the agl400 device is new. 4-66 revision 10 (aug 2008) 3.0 v lvcmos wide range support data was added to table 2-2 ? recommended operating conditions 1 . 2-2 dc and switching characteristics advance v0.4 3.3 v lvcmos wide range support data was added to table 2-25 ? summary of maximum and minimum dc input and output levels applicable to commercial and industrial conditions?software default settings to table 2-27 ? summary of maximum and minimum dc input and output levels applicable to commercial and industrial conditions?software default settings . 2-24 to 2-26 3.3 v lvcmos wide range support data was added to table 2-28 ? summary of maximum and minimum dc input levels . 2-27 3.3 v lvcmos wide range support text was added to table 2-49 minimum and maximum dc input and output levels for lvcmos 3.3 v wide range . 2-39 revision / version changes page
igloo low power flash fpgas revision 23 5-7 dc & switching, cont?d. table 2-49 minimum and maximum dc input and output levels for lvcmos 3.3 v wide range is new. 2-39 revision 9 (jul 2008) product brief v1.1 dc and switching characteristics advance v0.3 as a result of the libero ide v8.4 releas e, actel now offers a wide range of core voltage support. the document was updated to change 1.2 v / 1.5 v to 1.2 v to 1.5 v. n/a revision 8 (jun 2008) as a result of the libero ide v8.4 releas e, actel now offers a wide range of core voltage support. the document was updated to change 1.2 v / 1.5 v to 1.2 v to 1.5 v. n/a dc and switching characteristics advance v0.2 tables have been updated to reflect default values in the software. the default i/o capacitance is 5 pf. tables have been updated to include the lvcmos 1.2 v i/o set. ddr tables have two additional data points added to reflect both edges for input ddr setup and hold time. the power data table has been updated to match smartpower data rather then simulation values. agl015 global clock delays have been added. n/a table 2-1 ? absolute maximum ratings was updated to combine the vcci and vmv parameters in one row. the word "output" from the parameter description for vcci and vmv, and table note 3 was added. 2-1 table 2-2 ? recommended operating conditions 1 was updated to add references to tables notes 4, 6, 7, an d 8. vmv was added to the vcci parameter row, and table note 9 was added. 2-2 in table 2-3 ? flash programming limits ? retention, storage, and operating temperature1 , the maximum operating junction temperature was changed from 110 to 100. 2-2 vmv was removed from table 2-4 ? overshoot and undershoot limits 1 . the table title was modified to remove "as measured on quiet i/os." table note 2 was revised to remove "estimat ed sso density over cycles." table note 3 was revised to remove "refers only to overshoot/undershoot limits for simultaneous switching i/os. " 2-3 the "pll behavior at brown out condition" section is new. 2-4 figure 2-2 ? v2 devices ? i/o state as a function of vcci and vcc voltage levels is new. 2-5 eq 2 was updated. the temperature was changed to 100c, and therefore the end result changed. 2-6 the table notes for table 2-9 ? quiescent supply current (idd) characteristics, igloo flash*freeze mode* , table 2-10 ? quiescent supply current (idd) characteristics, igloo sleep mode* , and table 2-11 ? quiescent supply current (idd) characteristics, igloo shutdown mode were updated to remove vmv and include pdc6 and pdc7. vcci and vjtag were removed from the statement about idd in the table note for table 2-11 ? quiescent supply current (idd) characteristics, igloo shutdown mode . 2-7 note 2 of table 2-12 ? quiescent supply current (idd), no igloo flash*freeze mode1 was updated to include vccpll. note 4 was updated to include pdc6 and pdc7. 2-9 revision / version changes page
datasheet information 5-8 revision 23 revision 8 (cont?d) table 2-13 ? summary of i/o input buffer power (per pin) ? default i/o software settings , table 2-14 ? summary of i/o input bu ffer power (per pin) ? default i/o software settings , table 2-15 ? summary of i/o input buffer power (per pin) ? default i/o software settings , and table 2-16 ? summary of i/o output buffer power (per pin) ? defaul t i/o software settings1 were updated to change pdc2 to pdc6 and pdc3 to pdc7. the table notes were updated to reflect that power was measured on vcci. 2-10 through 2-11 in table 2-19 ? different components contributing to dynamic power consumption in igloo devices , the description for pac13 was changed from static to dynamic. 2-13 table 2-20 ? different components contributing to the static power consumption in igloo devices and table 2-22 ? different components contributing to the static power consumption in igloo device were updated to add pdc6 and pdc7, and to change the definition for pd c5 to bank quiescent power. subtitles were added to indicate type of devices and core supply voltage. 2-14 , 2-16 the "total static power consumption?pstat" section was updated to revise the calculation of p stat , including pdc6 and pdc7. 2-17 footnote ? was updated to include information about pac13. the pll contribution equation was changed from: p pll = p ac13 + p ac14 * f clkout to p pll = p dc4 + p ac13 * f clkout . 2-18 revision 7 (jun 2008) packaging v1.5 the "qn132" package diagram was updated to include d1 to d4. in addition, note 1 was changed from top view to bottom view, and note 2 is new. 4-28 revision 6 (jun 2008) packaging v1.4 this document was divided into two sections and given a version number, starting at v1.0. the first section of the docum ent includes features, benefits, ordering information, and temperature and speed grade offerings. the second section is a device family overview. n/a pin numbers were added to the "qn68" package diagram. note 2 was added below the diagram. 4-25 revision 5 (mar 2008) packaging v1.3 the "cs196" package and pin table was added for agl250. 4-12 revision 4 (mar 2008) product brief v1.0 the "low power" section was updated to change "1.2 v and 1.5 v core voltage" to "1.2 v and 1.5 v core and i/o voltage." the text "(from 12 w)" was removed from "low power active fpga operation." 1.2_v was added to the list of core and i/o voltages in the "advanced i/o" and "i/os with advanced i/o standards" section sections. i i , 1-7 the "embedded memory" section was updated to remove the footnote reference from the section heading and place it in stead after "4,608-bit" and "true dual-port sram (except 18)." i revision / version changes page
igloo low power flash fpgas revision 23 5-9 revision 3 (feb 2008) product brief rev. 2 this document was updated to include agl015 device information. qn68 is a new package offered in the agl015. the following sections were updated: "features and benefits" "igloo ordering information" "temperature grade offerings" "igloo devices" product family table table 1 ? igloo fpgas package sizes dimensions "agl015 and agl030" note n/a the "temperature grade offerings" table was updated to include m1agl600. iv in the "igloo ordering information" table, the qn package measurements were updated to include both 0.4 mm and 0.5 mm. iii in the "general description" section , the number of i/os was updated from 288 to 300. 1-1 packaging v1.2 the "qn68" section is new. 4-25 revision 2 (jan 2008) packaging v1.1 the "cs196" package and pin table was added for agl125. 4-10 revision 1 (jan 2008) product brief rev. 1 the "low power" section was updated to change the description of low power active fpga operation to "from 12 w" from "from 25 w." the same update was made in the "general description" section and the "flash*freeze technology" section . i , 1-1 revision 0 (jan 2008) this document was previously in datashe et advance v0.7. as a result of moving to the handbook format, actel has restarted the numbering. n/a advance v0.7 (december 2007) table 1 ? igloo product family, the "i/os per package1" table, and the temperature grade offerings table were updated to reflect the following: cs196 is now supported for agl250; device/package support for qn132 is to be determined for agl250; the cs281 package was added for agl600 and agl1000. i, ii, iv table 2 ? igloo fpgas package sizes dimensions is new, and package sizes were removed from the "i/os per package1" table. ii the "i/os per package1"table was updated to reflect 77 instead of 79 single- ended i/os for the vg100 package for agl030. ii the "timing model" was updated to be consist ent with the revised timing numbers. 2-20 in table 2-27 ? summary of maximum and minimum dc input and output levels applicable to commercial and industri al conditions?software default settings , t j was changed to t a in notes 1 and 2. 2-26 all ac loading figures for single-ended i/o standards were changed from datapaths at 35 pf to 5 pf. n/a the "1.2 v lvcmos (jesd8-12a)" section is new. 2-74 this document was previously in datashe et advance v0.7. as a result of moving to the handbook format, actel has restarted the version numbers. the new version number is advance v0.1. n/a table 2-4 ? igloo ccc/pll specificat ion and table 2-5 ? igloo ccc/pll specification were updated. 2-19, 2-20 revision / version changes page
datasheet information 5-10 revision 23 advance v0.7 (continued) the former table 2-16 ? maximum i/o frequency for single-ended and differential i/os in all banks in igloo devices (maximum drive strength and high slew selected) was removed. n/a the "during flash*freeze mode" section was updated to include information about the output of the i/o to the fpga core . 2-57 table 2-31 ? flash*freeze pin location in igloo family packages (device- independent) was updated to add uc81 and cs281. flash*freeze pins were assigned for cs81, cs121, and cs196. 2-61 figure 2-40 ? flash*freeze mode type 2 ? timing diagram was updated to modify the lsicc signal. 2-55 information regarding calculation of the quiescent supply current was added to the "quiescent supply current" section. 3-6 table 3-8 ? quiescent supply current (i dd ) characteristics, igloo flash*freeze mode ? was updated. 3-6 table 3-9 ? quiescent supply current (i dd ) characteristics, igloo sleep mode (vcc = 0 v) ? was updated. 3-6 table 3-11 ? quiescent supply current (i dd ), no igloo flash*freeze mode1 was updated. 3-7 table 3-115 ? minimum and maximum dc input and output levels was updated. 3-58 table 3-156 ? jtag 1532 was updated and table 3-155 ? jtag 1532 is new. 3-104 the "121-pin csp" and "281-pin csp" packages are new. 4-5, 4-7 the "81-pin csp" table for the agl030 device was updated to change the g6 pin function to io44rsb1 and the jg pin function to io45rsb1. 4-4 the "121-pin csp" table for the agl060 device is new. 4-6 the "256-pin fbga" table for the agl1000 device is new. 4-34 the "281-pin csp" table for the agl 600 device is new. 4-8 the "100-pin vqfp" table for the agl060 device is new. 4-18 the "144-pin fbga" table for the agl250 device is new. 4-24 the "144-pin fbga" table for the agl1000 device is new. 4-28 the "484-pin fbga" table for the agl600 device is new. 4-38 the "484-pin fbga" table for the agl1000 device is new. 4-43 advance v0.6 (november 2007) table 1 ? igloo product family, the "i/o s per package1" table, and the "igloo ordering information", and the temperat ure grade offerings table were updated to add the uc81 package. i, ii, iii, iv the "81-pin csp" table for the agl030 device is new. 4-3 the "81-pin csp" table for the agl030 device is new. 4-1 advance v0.5 (september 2007) table 1 ? igloo product family was updated for agl030 in the package pins section to change cs181 to cs81. i revision / version changes page
igloo low power flash fpgas revision 23 5-11 advance v0.4 (september 2007) cortex-m1 device information was added to table 1 ? igloo product family, the "i/os per package1" table, "igloo order ing information", and temperature grade offerings. i, ii, iii, iv the number of single-ended i/os for the cs81 package for agl030 was updated to 66 in the "i/os per package1" table. ii the "power conservation techniques" section was updated to recommend that unused i/o signals be left floating. 2-51 advance v0.3 (august 2007) in table 1 ? igloo product family, the cs81 package was added for agl030. the cs196 was replaced by the cs121 for agl060. table note 3 was moved to the specific packages to which it applies for agl060: qn132 and fg144. i the cs81 and cs121 packages were added to the "i/os per package1" table. the number of single-ended i/os was removed for the cs196 package in agl060. table note 6 was moved to the spec ific packages to which it applies for agl060: qn132 and fg144. ii the cs81 and cs121 packages were added to the temperature grade offerings table. the temperature grade offerings were removed for the cs196 package in agl060. table note 3 was moved to the spec ific packages to which it applies for agl060: qn132 and fg144. iv the cs81 and cs121 packages were added to table 2-31 ? flash*freeze pin location in igloo family packages (device-independent). 2-61 advance v0.2 the words "ambient temperature" were added to the temperature range in the "igloo ordering information", temperat ure grade offerings, and "speed grade and temperature gra de matrix" sections. iii, iv the t j parameter in table 3-2 ? recommended operating conditions was changed to t a , ambient temperature, and table notes 4?6 were added. 3-2 revision / version changes page
datasheet information 5-12 revision 23 datasheet categories categories in order to provide the latest information to des igners, some datasheet parameters are published before data has been fully characterized from silicon devices. the data provided for a given device, as highlighted in the "igloo device status" table , is designated as either "product brief," "advance," "preliminary," or "production." the definiti ons of these categories are as follows: product brief the product brief is a summarized version of a data sheet (advance or producti on) and contains general product information. this document gives an overvi ew of specific device and family information. advance this version contains initial estimated information bas ed on simulation, other products, devices, or speed grades. this information can be used as estimates, bu t not for production. this label only applies to the dc and switching characteristics chapter of the da tasheet and will only be used when the data has not been fully characterized. preliminary the datasheet contains information based on simulation and/or initial characterization. the information is believed to be correct, but changes are possible. unmarked (production) this version contains information that is considered to be final. export administration regulations (ear) the products described in this document are subj ect to the export administ ration regulations (ear). they could require an approved export license prior to export from the united st ates. an export includes release of product or disclosure of technology to a foreign national inside or outside the united states. safety critical, life support, and high-reliability applications policy the microsemi products described in this advance status document may not have completed microsemi?s qualification process. microsemi may amend or enhance products during the product introduction and qualification process, resulting in ch anges in device functionality or performance. it is the responsibility of each customer to ensure the fitness of any microsemi product (but especially a new product) for a particular purpose, including approp riateness for safety-critical, life-support, and other high-reliability applications. consult microsemi?s terms and conditions for specific liability exclusions relating to life-support applications. a reliability report covering all of the microsemi soc products group?s products is available at http://www.microsemi.com/s oc/documents/ort_report.pdf . microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. contact your local microsemi sales office for additional reliability information.

51700095-23/12.12 ? 2012 microsemi corporation. all rights reserved. microsemi and the microsemi logo are trademarks of microsemi corporation. all other trademarks and service marks are the property of their respective owners. microsemi corporation (nasdaq: mscc) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security ; enterprise and communications; and industrial and alternative energy markets. products incl ude high-performance, high-reliability analog and rf devices, mixed signal and rf integrated circuits, customizable socs, fpgas, and complete subsystems. microsemi is headquartered in aliso viejo, calif. learn more at www.microsemi.com . microsemi corporate headquarters one enterprise, aliso viejo ca 92656 usa within the usa: +1 (949) 380-6100 sales: +1 (949) 380-6136 fax: +1 (949) 215-4996


▲Up To Search▲   

 
Price & Availability of AGL015V2-CS484ES

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X